Skip to main content
Log in

Classification and characterization of hydrodynamic and transport behaviors of three-phase reactors

  • Featured Review
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

According to axial profile of solid concentration, the cocurrent upward threephase reactors with liquid as continuous phase can be classified into three types (a) gassparged slurry reactors, (b) threephase bubble columns, and (c) threephase fluidized beds Comparative study shows that the gas hold up, bubble characteristics and mass transfer are significantly dependent on the type of threephase reactors Three types of reactors exhibit the different hydrodynamic and transport behaviors with particle size, solid concentration and gas holdup The structural analysis of the axial solid distribution indicates the bubble and bubble wake dynamics are the key factors to the hydrodynamic and transport behaviors of three-phase reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez-Cuenca, M, Baker, C. G. J., Bergougnou, M. A. and Nerenberg, M. A., “Oxygen Mass Transfer in Threephase Fluidized Beds Working at Large How Rates”Can. J. chem. Engng,61, 58 (1983).

    CAS  Google Scholar 

  • Baker, C. G. J., Armstrong, E. R. and Bergougnou, M. A., “Heat Transfer in Threephase Fluidized Beds”,Powder Tech.,21, 195 (1978).

    Article  CAS  Google Scholar 

  • Begovich, J. M. and Watson, J. S., “Hydrodynamic Characteristics of Threephase Fluidized Beds, in Fluidization”,(Edited by Davidson, J. F. and Keairns, D. L.), Cambridge University Press, Cambridge, 190 (1978).

    Google Scholar 

  • Bhatia, V. K. and Epstein, N., “Threephase Fluidization: A Generalized Wake Model”, In Proc. Int. Symp. Fluidization and its Applications, Toulouse (France): Editions Cepadues, 380 (1974).

  • Blum, D. B. and Toman, J. J., “Threephase Fluidization in a Liquid Phase Methanator”,AIChE Symp. Ser.,73(161), 115 (1977).

    CAS  Google Scholar 

  • Bruce, P. N. and RevelChion, L., “Bed Porosity in Threephase Fluidization,”Powder Tech.,10, 243 (1974).

    Article  CAS  Google Scholar 

  • Capuder, E. and Koloini, T., “Gas Holdup and Interfacial Area in Aerated Suspensions of Small Particles”,Chem. Engng Res. Des.,62, 255(1984).

    CAS  Google Scholar 

  • Catros, A., Bernard, J. R., Briens, C. and Bergougnou, M. A., “Gas Holdup above the Bed Surface and Grid Gas Jet Hydrodynamics for Three Phase Fluidized Beds”,Can. J. chem. Engng,63, 754 (1985).

    CAS  Google Scholar 

  • Chang, S., Kang, K. Y. and Kim, S. D., “Mass Transfer in Two and Threephase Fluidized Bed,”J. Chem. Eng. Japan,19, 524 (1986).

    CAS  Google Scholar 

  • Charinpanitkul, T., Tsutsumi, A. and Yoshida, K., “Gas-liquid Mass Transfer in a Threephase Reactor”,J. Chem. Eng. Japan,26(4), 440(1993).

    Article  CAS  Google Scholar 

  • Chiu, T.-M. and Ziegler, E. N., “Liquid Holdup and Heat Transfer Coefficient in Liquid-solid and Threephase Fluidized Beds,”AIChE Journal,31, 1504 (1985).

    Article  CAS  Google Scholar 

  • Cova, D. R., “Catalyst Suspension in Gasagitated Tubular Reactors,”Ind. Eng. Chem. Proc. Des. Dev.,5, 20(1966).

    Article  CAS  Google Scholar 

  • Dakshinamurty, P., Subrahmanyam, V. and Rao, J. N., “Bed Porosities in Gasliquid Fluidization,”Ind. Engng Chem. Process Des. Dev.,10, 322 (1971).

    Article  CAS  Google Scholar 

  • Dakshinamurty, P., Rao, K. V, Subbaraju, R. V. and Subrahmanyam, V., “Bed Porosities in Gasiquid Fluidization,”Ind. Engng Chem. Process Des. Dev.,11, 318 (1972).

    Article  CAS  Google Scholar 

  • de Bruijn, T. J. W., Reilly, I. G., MacIntyre, D. and Scott, D. S., “Solids Exit Discontinuity in Slurry Bubble Columns,”Can. J. Chem. Eng.,67, 283 (1989).

    Google Scholar 

  • Deckwer, W.D., Louisi, Y, Zaidi, A. and Ralek, M., “Hydrodynamic Properties of the Fischer-Tropsch Slurry Process,”Ind. Engng Chem. Process Des. Dev.,19, 699 (1980).

    Article  CAS  Google Scholar 

  • Deckwer, W.-D. and Schumpe, A., “Transport Phenomena in Threephase Reactors with Fluidized Solids,”Ger. Chem. Eng.,7, 168 (1984).

    Google Scholar 

  • Dhanuka, V. R. and Stepanek, J. B., “Gas and Liquid Holdup Drop Measurement in a Threephase Fluidized Bed, Fluidization,” Davision, J. F. and Keairns, D. L. eds, Cambridge Univ. Press, 179 (1978).

  • Dhanuka, V. R. and Stepanek, J. B., “Simultaneous Measurement of Interfacial Area and Mass Transfer Coefficient in Threephase Fluidized Beds,”AIChE Journal,26, 1029 (1980).

    Article  CAS  Google Scholar 

  • El-Temtarmy, S. A. and Epstein, N., “Contraction or Expansion of Threephase Fluidized Beds Containing Fine/Light Solids,”Can. J. Chem. Eng.,57, 520 (1979).

    Article  Google Scholar 

  • Epstein, N., “Threephase Fluidization: Some Knowledge Gaps,”Can. J. Chem. Eng.,59, 259 (1981).

    Google Scholar 

  • Fan, L.-S., Jean, R.-H. and Kitano, K., “On the Operating Regimes of Cocurrent Upward Gasliquid-solid Systems with Liquid as the Continuous Phase,”Chem. Eng. Sci.,42, 1853 (1987).

    Article  CAS  Google Scholar 

  • Fan, L.-S. and Tsuchiya, K., “Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions,” Butterworth-Heinemann Publisher, Stoneham, MA (1990).

    Google Scholar 

  • Farkas, E. J. and Leblond, P. F., “Solids Concentration Profile in the Bubble Column Slurry Reactor,”Can. J. Chem. Eng.,47, 215 (1969).

    Article  CAS  Google Scholar 

  • Fukuma, M., Muroyama, K. and Yasunishi, A., “Properties of Bubble Swarm in a Slurry Bubble Column,”J. Chem. Eng. Japan,20, 28 (1987).

    CAS  Google Scholar 

  • Heck, J. and Onken, U., “Hysteresis Effects in Suspended Solid Particles in Bubble Columns With and Without Draft Tube,”Chem. Eng. Sci.,42, 1211 (1987).

    Article  CAS  Google Scholar 

  • Imafuku, K., Wang, T.-Y, Koide, K. and Kubota, H., “The Behavior of Suspended Solid Particles in the Bubble Column,”J. Chem. Eng. Japan,1, 153 (1968).

    CAS  Google Scholar 

  • Jean, R.-H. and Fan, L.-S., “A Simple Correlation for Solids Holdup in a Gas-liquid-solid Fluidized Bed,”Chem. Eng. Sci.,41, 2823 (1986).

    Article  CAS  Google Scholar 

  • Jean, R.-H., Tang, W.-T. and Fan, L.-S., “The Sedimentation-dispersion Model for Slurry Bubble Columns,”AIChE Journal,35, 662(1989).

    Article  CAS  Google Scholar 

  • Kara, S., Kelkar, B. G. and Shah, Y. T., “Hydrodynamics and Axial Mixing in a Threephase Bubble Column,”Ind. Eng. Chem. Process Des. Dev.,21, 584 (1982).

    Article  CAS  Google Scholar 

  • Kato, Y, Nishiwaki, A., Kago, T., Fukuda, T. and Tanaka, S., “Gas Holdup and Overall Volumetric Absorption Coefficient in Bubble Columns with Suspended Solid Particles,”Int. Chem. Eng.,13, 563 (1973).

    Google Scholar 

  • Kato, Y, Morooka, S., Kago, T., Saruwatari, T. and Yang, S.-Z., “Axial Holdup Distributions of Gas and Solid Particles in Threephase Fluidized Bed for Gasliquid(slurry)-solid Systems,,”J. Chem. Eng. Japan,18, 308 (1985).

    CAS  Google Scholar 

  • Kawamura, K., Sasano, T. and Mifune, A., “Solid-liquid Contact in a Gas-liquid-solid Fluidized Bed,,”Kagaku Kogaku,29, 693 (1965).

    Google Scholar 

  • Kelkar, B. G., Shah, Y T. and Carr, N. L., “Hydrodynamics and Axial Mixing in a Three-phase Bubble Column,,”Ind. Engng Chem. Process Des. Dev.,23, 308 (1984).

    Article  CAS  Google Scholar 

  • Kim, S. D., Baker, C. G. J. and Bergougnou, M. A., “Phase Holdup Characteristics of Three Phase Fluidized Beds,,”Can. J. chem. Engng.,53, 134(1975).

    CAS  Google Scholar 

  • Kim, S. D. and Kim, C. H., “Axial Dispersion Characteristics of Three Phase Fluidized Beds,,”J. Chem. Eng. Japan,16, 172 (1983).

    CAS  Google Scholar 

  • Kim, Y. H., Tsutsumi, A. and Yoshida, K., “Effect of Particle Size on Gas Holdup in Three-phase Reactors,,” in Reactions & Reaction Engineering (Edited by Mashelkar, R. A. and Kumar, R.),,” Indian Academy of Sciences, Bangalore, 261 (1987).

    Google Scholar 

  • Kim, Y. H., Tsutsumi, A. and Yoshida, K., “Prediction of Gas Holdup for Threephase Reactors,,” German/Japanese Symposium on Bubble Column, Schwerte, Germany, 129 (1988).

    Google Scholar 

  • Kim, Y. H., Ph.D. Thesis, university of Tokyo (1989).

  • Kitano, K. and Fan, L.S.“Nearwake Structure of a Single Gas Bubble in a Twodimensional Liquid-solid Fluidized Bed: Solids Holdup,”Chem. Eng. Sci.,43, 1355 (188).

  • Kojima, H. and Asano, K., “Hydrodynamic Characteristics of Suspension-bubble Column,,”Kagaku Kogaku Ronbunshu,6, 46 (1980).

    CAS  Google Scholar 

  • Koide, K., Takazawa, A., Komura, M. and Matsunaga, H., “Gas Holdup and Volumetric Liquid Phase Mass Transfer Coefficient in Solidsuspended Bubble Column,,”J. Chem. Eng. Japan,17, 459(1984).

    CAS  Google Scholar 

  • Kreischer, B. E., Moritomi, H. and Fan, L.-S., “Wake Solids Hold-up Characteristics Behind a Single Bubble in a Three-dimensional Liquid-solid Fluidized Bed,,”Int. J. Multiphase Flow,16, 187(1990).

    Article  CAS  Google Scholar 

  • Lee, J. C. and Al-Dabbagh, N., “Three-phase Fluidized Beds Onset of Fluidization at High Gas Rates,” in Fluidization (Edited by Davidson, J. F. and Keairns, D. L.), Cambridge University Press, Cambridge, 184(1978).

    Google Scholar 

  • Lindt, J. T., “Note on the Wake Behind a Two-dimensional Bubble,”Chem. Eng. Sci.,26, 1776 (1971).

    Article  CAS  Google Scholar 

  • Miyahara, T., Tsuchiya, K. and Fan, L.-S., “Wake Properties of a Single Bubble Accompanied by a Periodic Wake,,”Int. J. Multiphase Flow,14, 749 (1988).

    Article  CAS  Google Scholar 

  • Morooka, S., Uchida, K. and Kato, Y, “Recirculating Turbulent Flow of Liquid in Gas-liquid-solid Fluidized Bed,”J. Chem. Eng. Japan,15, 29 (1982).

    CAS  Google Scholar 

  • Muroyama, K., Fukuma, M. and Yasunishi, A., “Wall-to-bed Heat Transfer Coefficient in Gas-liquid-solid Fluidized Beds,”Can. J. chem. Engng.,62, 199 (1984).

    CAS  Google Scholar 

  • Nikov, I. and Delmas, H., Solid-liquid Mass Transfer in Three-phase Fixed and Fluidized Beds,"Chem. Eng. Sci.,42, 1089 (1987).

    Article  CAS  Google Scholar 

  • Nguyen-Tien, Patwari, K., Schumpe, A. N. and Deckwer, W.-D., “Gas-liquid Mass Transfer in Fluidized Particle Beds,”AIChE Journal,31, 194 (1985).

    Article  CAS  Google Scholar 

  • Nigam, K. D. P. and Schumpe, A., “Gas-liquid Mass Transfer in a Bubble Column with Suspended Solids,,”AIChE Journal,33, 328(1987).

    Article  CAS  Google Scholar 

  • 0stergaard, K., “Advances in Chemical Engineering,,” eds Drew, T. B., Cokelet, G. R., Hoopes, J. W. and Vermulen, T., Academic Press, New York (1968).

    Google Scholar 

  • 0stergaard, K. and Fosbø, P., “Transfer of Oxygen Across the Gas-liquid Interface in Gas-liquid Fluidized Bes,,”Chem. Eng. J.,3, 105 (1972).

    Article  Google Scholar 

  • Pandit, A. B. and Joshi, J. B., “Mass and Heat Transfer Characteristics of Three Phase Sparged Reactors,”Chem. Eng. Res. Des.,64, 125(1986).

    CAS  Google Scholar 

  • Roy, N. K., Guha, D. K. and Rao, M. N., “Suspension of Solids in a Bubbling Liquid Critical Gas Flow Rates for Complete Suspension,”Chem. Engng. Sci.,19, 215 (1964).

    Article  CAS  Google Scholar 

  • Saberian-Broudjenni, M., Wild, G., Midoux, N. and Charpentier, J. C, “Contribution a l’etude du transfert de chaleur a la paroi dans les reacteurs a lit fluidise gaz-liquide-solide a faible vitesse de liquide,”Can. J. chem. Engng.,63, 553 (1985).

    CAS  Google Scholar 

  • Sada, E., Kumazawa, H., Lee, C. H. and Narukawa, H., “Gas-Liquid Interfacial Area and Liquid-side Mass-transfer Coefficient in a Slurry Bubble Column,”Ind. Eng. Chem. Res.,26, 112 (1987).

    Article  CAS  Google Scholar 

  • Sänger, P. and Deckwer, W.-D., “Liquid-solid Mass Transfer in Aerated Suspensions,”Chem. Engng. J,22, 179 (1981).

    Article  Google Scholar 

  • Schumpe, A., Saxena, A. K. and Fang, L. K., “Gas/Liquid Mass Transfer in a Slurry Bubble Column,”Chem. Engng. Sci.,42, 1787(1987).

    Article  CAS  Google Scholar 

  • Smith, D. N. and Ruether, J. A., “Dispersed Solid Dynamics in a Slurry Bubble Column,”Chem. Engng. Sci.,40, 741 (1985).

    Article  CAS  Google Scholar 

  • Song, G.-H., Tsuchiya, K. and Fan, L.-S., “Image Processing Technique for Measurement of Solids Holdup in Near Wake Behind a Single Bubble in a Liquid-solid Fluidized Bed,”Chem. Eng. Sci.,46, 2933 (1991).

    Article  CAS  Google Scholar 

  • Soung, W. Y, “Bed Expansion in Threephase Fluidization,,”Ind. Engng. Chem. Process Des. Dev.,17, 33 (1978).

    Article  CAS  Google Scholar 

  • Suganuma, T. and Yamanishi, T., “Behavior of Solid Particles in Bubble Columns,”Kagaku Kogaku,30, 1136(1966).

    CAS  Google Scholar 

  • Sun, Y, Nozawa, T. and Furusaki, S., “Gas Holdup and Volumetric Oxygen Transfer Coefficient in a Three-phase Fluidized Bed Bioreactor”,J. Chem. Eng. Japan,21(1), 15 (1988).

    CAS  Google Scholar 

  • Tsuchiya, K. and Fan, L.-S., “Near-wake Structure of a Single Gas Bubble in a Twodimensional Liquid-solid Fluidized Bed: Vortex Shedding and Wake Size Variation,”Chem. Eng. Sci.,43, 1167(1988).

    Article  CAS  Google Scholar 

  • Tsutsumi, A., Kim, Y. H., Togawa, S. and Yoshida, K., “Classification of Threephase Reactors,” in Reactions & Reaction Engineering (Edited by Mashelkar, R. A. and Kumar, R.), Indian Academy of Sciences, Bangalore, 247 (1987).

    Google Scholar 

  • Yasunishi, A., Fukuma, M. and Muroyama, K., “Hydrodynamics and Gas-liquid Mass Transfer Coefficient in a Slurry Bubble Column with High Solid Content,”Kagaku Kogaku Ronbunshu,12, 420(1986).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Tsutsumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsutsumi, A., Chen, W. & Kim, YH. Classification and characterization of hydrodynamic and transport behaviors of three-phase reactors. Korean J. Chem. Eng. 16, 709–720 (1999). https://doi.org/10.1007/BF02698341

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698341

Key words

Navigation