Skip to main content
Log in

Lower Ordovician sponge bioherms in the Makkol Formation, Taebaeksan Basin, mideast Korea

  • Published:
Facies Aims and scope Submit manuscript

Summary

Isolated sponge bioherms are documented from the Lower Ordovician Makkol Formation of the Taebaek Group in the Taebaeksan Basin, mideast Korea. They are formed by an association of a lithistid spongeArchaeoscyphia, a receptaculidCalathium and stromatolitic algae, and share many features with the Lower Ordovician buildups known elsewhere. These bioherms were established in an incised bottom and reached up to about 1 m in height. As the bioherms grew upward, they were more severely affected by intense wave action and frequent storms, which eventually perished the bioherms. The occurrence ofArchaeoscyphia-Calathium association suggests a close biogeographic link between Korea and North China, supporting the paleogeographic model that the Taebaeksan Basin was connected through contiguous shallow waters to North China in the early Paleozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aigner, T., (1985): Storm Depositional Systems.-Lecture Notes in Earth Sciences3, Springer-Verlag, 174 p.

  • Allen, J.R.L. (1982): Sedimentary Structures: Their Character and Physical Basis.-Developments in Sedimentology30. Elsevier Scientific Publ. Co., 663 p.

  • Allen, B.D. & Anderson, R.Y. (1993): Evidence from western North America for rapid shifts in climate during the last glacial maximum.—Science.260, 1920–1923.

    Article  Google Scholar 

  • Anderson, R.Y. (1986): The varve microcosm: Propagator of cyclic bedding.—Paleoceanography.1, 373–382.

    Google Scholar 

  • Anderson, R.Y. (1996): Seasonal sedimentation: a framework for reconstructing climatic and environmental changes. In: KEMP, A.E.S. (ed.): Paleoclimatology and Paleoceanography from Laminated Sediments.—Geol. Soc. Spec. Publ.116, 1–15.

  • Bosscher, H. & Schlager, W. (1992): Computer simulation of reef growth. Sedimentology.39, 503–512.

    Article  Google Scholar 

  • Bowen, Z.P., Rhoads, D.C. & McAlester, A.L. (1974): Marine benthic communities in the Upper Devonian of New York.— Lethaia.7, 93–120.

    Google Scholar 

  • Burrett, C. (1973): Ordovician biogeography and continental drift. —Palaeogeography, Palaeoclimatology, Palaeoecology. 13, 161–201.

    Article  Google Scholar 

  • Burrett, C. & Stait, B. (1986): China and Southeast Asia as part of the Tethyan margin of Cambro-Ordovician Gondwanaland, p. 65–77. In: McKenzie, K. (ed.). Shallow Tethys.2, Balkema, Rotterdam.

    Google Scholar 

  • Canas, F. & Carrera, M.G. (1993): Early Ordovician microbial sponge-receptaculitid bioherms of the Precordillera basin, Western Argentina.—Facies.29, 169–178.

    Article  Google Scholar 

  • Carrera, M.G. & Canas, F. (1996): Los biohermos de la Formación San Juan (Ordovícico temprano, Precordillera Argentina): paleoecología y comparaciones.—A.A.S.3, 85–104.

    Google Scholar 

  • Carrera, M.G. & Rigby, J.K. (1999): Biogeography of Ordovician sponges.—J. Paleontol.73, 26–37.

    Google Scholar 

  • Cheong, C.H. (1969): Stratigraphy and paleontology of the Samcheog coalfield, Gangweondo, Korea (1).—J. Geol. Soc. Korea.5, 13–56.

    Google Scholar 

  • Choi, D.K. (1998): The Yongwol Group redefined—a proposal for stratigraphic nomenclature of the Choson Supergroup. —Geosciences J.2, 220–234.

    Google Scholar 

  • Choi, D.K., Kim, D.H. & Sohn, J.W. (2001): Ordovician trilobite faunas and depositional history of the Taebaeksan Basin, Korea: implications for palaeogeography.—Alcheringa,25, 59–76.

    Article  Google Scholar 

  • Chough, S.K., Kwon, S.T., Ree, J.H. & Choi, D.K. (2000): Tectonic and sedimentary evolution of the Korean peninsula: a review and new view.—Earth-Science Review.52, 175–235.

    Article  Google Scholar 

  • Church, S.G. (1974): Lower Ordovician patch reefs in western Utah.—Bringham Young University Geology Studies.21, 41–62.

    Google Scholar 

  • Cloyd, K.C., Demicco, R.V. & Spencer, R.J. (1990): Tidal channel, levee, and crevasse-splay deposits from a Cambrian tidal channel system: a new mechanism to produce shallowing-upward sequences.—J. Sedim. Petrol.60, 73–83.

    Google Scholar 

  • Demicco, R.V. & Hardie, L.A. (1994): Sedimentary structures and early diagenetic features of shallow marine carbonate deposits. —Soc. Econ. Paleontol. Min. Atlas Series.1, 265 p.

  • Droser, M.L. & Bottjer, D.J. (1986): A semi quantitative field classification of ichnofabric.—J. Sedim. Petrol.56, 558–559.

    Google Scholar 

  • Elliot, T. (1986): Siliciclastic shorelines. In: Reading, H.G. (ed.): Sedimentary Environments and Facies (2nd edition). Blackwell, 155–188.

  • Endo, R. (1932): The Canadian and Ordovician formations and fossils of South Manchuria.—Bulletin of the Unites States Natural Museum,164, 152 p.

  • Grabau, A. (1922): Ordovician fossils from North China.— Palaeontologia Sinica, Series B,1 (1): 12–15.

    Google Scholar 

  • Guo, S.Z. (1982): New materials of Ordovician sponges from Nei Mongol and Northeast China.—Publication of Shenyang Institute of Geology and Mineral Resources,4, 58–61. (In Chinese)

    Google Scholar 

  • Guo, S. Z. (1983): The receptaculid Sonites from the Early Ordovician of China.—Association of Australasian Paleontologists, Memoir 1: 75–84.

    Google Scholar 

  • Heckel, P.H. (1972): Possible inorganic origin for stromatactis in calcilutite mounds in the Tully Limestone, Devonian of New York.—J. Sedim. Petrol.42, 7–18.

    Google Scholar 

  • James, N.P. (1984): Shallowing-upward sequences in carbonates. In: Walker, R.G., (ed.): Facies model. Geoscience Canada. 213–228.

  • Jennette, D.C. & Pryor, W.A. (1993): Cyclic alternation of proximal and distal storm facies: Kope and Fairview formations (Upper Ordovician), Ohio and Kentuckey.—J. Sedim. Petrol.63, 183–203.

    Google Scholar 

  • Kobayashi, T. (1966): The Cambro-Ordovician formations and faunas of south Korea. Part X. stratigraphy of Chosen Group in Korea and south Machuria and its relation to the Cambro-Ordovician formations of other areas. Sect. A. The Chosen Group of South Korea.—Journal of the Faculty Science. University of Tokyo, Sect. II,16, 1–84.

    Google Scholar 

  • Kobayashi, T. (1969): The Cambro-Ordovician formations and faunas of South Korea, Part X, Stratigraphy of the Chosen Group in Korea and South Manchuria and its relation to the Cambro-Ordovician formations of other areas, Section D, The Ordovician of eastern Asia and other parts of the continent.— Journal of the Faculty of Science, University of Tokyo, Sect. II,17, 163–316.

    Google Scholar 

  • Kreisa, R.D. (1981): Storm-generated sedimentary structures in subtidal marine facies with examples from the Middle and Upper Ordovician of Southwestern Virginia.—J. Sedim. Petrol.51, 823–848.

    Google Scholar 

  • Kreisa, R.D. & Bambach, R.K. (1982): The role of storm processes in generating shell beds on Paleozoic shelf environments. In: Einsele, G. & Seilacher, A. (eds.): Cyclic and Event Stratification. Springer-Verlag, 200–207.

  • Kumar, N. & Sanders, J.E. (1976): Characteristics of shoreface storm deposits: modern and ancient examples.—J. Sedim. Petrol.46, 145–162.

    Google Scholar 

  • Kwon, Y.K. (2000): Origin of limestone conglomerates in the Choson Supergroup (Cambro-Ordovician), Taebaeksan Basin, Korea. MS thesis, Seoul National University, 155p.

  • Kwon, Y.K., Chough, S.K., Choi, D.K. & Lee, D.J. (2002): Origin of limestone conglomerates in the Choson Supergroup (Cambro-Ordovician), mid-east Korea.—Sedim. Geol.146, 265–283.

    Google Scholar 

  • Lee, D.J., & Yoo, C.M. (1993): Middle Ordovician stromatoporoids from the Yeongheung Formation and its biostratigraphic implication.—J. Paleont. Soc. Korea,9, 131–142 (In Korean).

    Google Scholar 

  • Liu, B.-L., Rigby, J.K., Jiang, Y.-W. & Zhu, Z.-D. (1997): Lower Ordovician lithistid sponges from the eastern Yangtze gorge area, Hubei, China.—J. Paleont.71, 194–207.

    Google Scholar 

  • Markello, J.R. & Read, J.F. (1981): Carbonate ramp-to-deeper shale shelf transitions of an Upper Cambrian intrashelf basin, Nolichucky Formation, Southwest Virginia Appalachians.— Sedimentology.28, 573–597.

    Article  Google Scholar 

  • Moshier, S.O. (1985): Carbonate platform sedimentology, Upper Cambrian Richland Formation, Lebanon Valley, Pennsylvania. —J. Sedim. Petrol.56, 204–216.

    Google Scholar 

  • Myrow, P.M. & Southard, J.B. (1991): Combined-flow model for vertical stratification sequences in shallow marine storm deposits.—J. Sedim Petrol.61, 202–210.

    Google Scholar 

  • O'Brian, N.R. & Pietraszek-Mattner, S. (1998): Origin of the fabric of laminated fine-grained glaciolacustrine deposits.—J. Sedim. Res.68, 832–840.

    Google Scholar 

  • Osleger, D.A. (1991): Subtidal carbonate cycles: Implications for allocyclic vs. autocyclic controls.—Geology.19, 917–920.

    Article  Google Scholar 

  • Osleger D.A. & Read, J.F. (1991): Relation of eustasy to stacking patterns of meter-scale carbonate cycles Late Cambrian, U.S.A. —J. Sed. Petrol.61, 1225–1252.

    Google Scholar 

  • Paik, I.S. (1987): Depositional environments of the Middle Ordovician Maggol Formation, southern part of the Baegunsan Syncline area.—J. Geol. Soc. Korea.23, 360–373.

    Google Scholar 

  • Pratt, B.R. & James, N.P. (1982): Cryptalgal-metazoan bioherms of Early Ordovician age in the St. George Group, western Newfoundland.—Sedimentology.29, 543–569.

    Article  Google Scholar 

  • Rhoads, D.C. (1967): Biogeneic reworking of intertidal and subtidal sediments in Barstable Harbor and Buzzards Bay.—J. Geology.75, 461–471.

    Article  Google Scholar 

  • Rigby, J.K. (1971): Sponges of the Ordovician Cat Head Member, Lake Winipeg, Manitoba, Pt. 3, Fossils of the Ordovician Red River Formation (Cat Head Member). Manitoba.—Contributions to Canadian Paleontology, Geological Survey of Canada, Bulletin.202, 35–68.

    Google Scholar 

  • Rigby, J.K. (1987): Cambrian and Silurian sponges from North Greenland. In: PEEL, J.S. (ed.): North Greenland Lower Paleozoic paleontology stratigraphy: shorter contributions.— Gronland Geologiske Undersogelse, Rapport Nr132, 51–63.

  • Rigby, J.K. & Toomey, D.F. (1978): A distinctive sponge spicule assemblage from organic buildups in the Lower Ordovician of southern Oklahoma.—J. Paleontol.52, 501–506.

    Google Scholar 

  • Rigby, J.K., Nitecki, M.H., Zhu, Z.-D., Liu, B.-L. & Jiang, Y.-W. (1995): Lower Ordovician reefs of Hubei, China, and the western United States. In: Cooper, J.D., Droser, M.L. & Finney, S.C. (eds.): Ordovician Odyssey: Seventh International Symposium on the Ordovician System SEPM Pacific Section, Las Vegas, 423–426.

    Google Scholar 

  • Rubin, D.M. & Friedman, G.M. (1977): Intermittently emergent shelf carbonates: an example from the Cambro-Ordovician of eastern New York State.—Sedim. Geol.19, 81–106.

    Article  Google Scholar 

  • Sami, T. & Desrochers, A. (1992): Episodic sedimentation on an early Silurian, storm-dominated carbonate ramp, Becscie and Merrimack formations, Anticosti Island, Canada.— Sedimentology.39, 355–381.

    Article  Google Scholar 

  • Scotese, C. R., & McKerrow, W.S. (1991): Ordovician plate tectonic reconstructions. In: Barnes, C.R. & Williams, S.H. (eds.): Advances in Ordovician Geology, Geological Survey of Canada, Paper 90-9, 271–182.

  • Sepkoski, J.J. Jr. (1981): A factor analytic description of the Phanerozoic marine fossil record.—Paleobiology.7, 36–53.

    Google Scholar 

  • Sepkoski, J.J., Jr. (1982): Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna. In: Einsele, G. & Seilacher, A. (eds.): Cyclic and Event Stratification. Springer-Verlag, 371–385.

  • Sepkoski, J.J., Jr., Bambach, R.K. & Droser, M.L. (1991): Secular changes in Phanerozoic event bedding and the biological overprint. In: Einsele, G., Ricken, W. & Seilacher, A. (eds.): Cycles and Events in Stratigraphy. Springer-Verlag, 298–312.

  • Shenyang Institute of Geology and Mineral Resources (1980): Paleontological Atlas of Northeast China (1), Paleozoic Volume. Geological Publishing House, Beijing, China, 95–97.

    Google Scholar 

  • Southard, J.B., Lambie, J.M., Fedrico, D.C., Pile, H.T. & Weidman, C.R. (1990): Experiments on bed configulations in fine sand under bidirectional purely oscillatory flow, and the origin of hummocky cross stratification.—J. Sedim. Petrol.60, 1–17.

    Google Scholar 

  • Watson, M.P., Hayward, A.B., Parkinson, D.N. & Zhang, Z.M. (1987): Plate tectonic history, basin development and petroleum source rock deposition onshore China.—Marine and Petroleum Geology.4, 205–225.

    Article  Google Scholar 

  • Webby, B.D. (1984): Ordovician reefs and climate: a review. In: Bruton, D.L. (ed.): Aspects of the Ordovician System. Universitetsforlaget. Oslo, 89–100.

    Google Scholar 

  • Whittington, H.B. & Hughes, C.P. (1974): Geography and faunal provinces in the Tremadoc Epoch. In: Ross, C.A. (ed): Paleogeographic Provinces and Provinciality. Society of Economic Paleontologists and Mineralogists, Special Publication21, 203–218.

  • Woo, K.S. (1999): Cyclic tidal successions of the Middle Ordovician Maggol Formation in the Taebaeg area, Kangwondo, Korea. —Geosciences J.3, 123–140.

    Article  Google Scholar 

  • Yun, C. (1999): Ordovician cephalopods from the Maggol Formation of Korea.—Paleontological Research.3, 202–221.

    Google Scholar 

  • Zhu, Z.-D., Gou, C.-X., Liu, B.-L., Hu, M.-Y., Hu, A.-M., Xiao, C.-T., Meng, X.-F. & Li, X.-M. (1993): Lower ordovician reefs at Huanghuachang, Yichang, East of the Yangtze Gorge.— Scientific Geologica Sinica2, 79–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, Y.K., Lee, D.J., Choi, D.K. et al. Lower Ordovician sponge bioherms in the Makkol Formation, Taebaeksan Basin, mideast Korea. Facies 48, 79–90 (2003). https://doi.org/10.1007/BF02667531

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02667531

Keywords

Navigation