Skip to main content
Log in

Cavity microstructure and kinetics during gas tungsten arc welding of helium-containing stainless steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Helium was implanted in type 316 stainless steel, through tritium decay, to levels of 0. 18, 2. 5, 27, 105, and 256 atomic parts per million (appm). Bead-on-sheet welds were then made using the gas tungsten arc (GTA) process. Intergranular cracking occurred in the heat-affected zones (HAZs) of specimens with helium concentrations equal to or greater than 2.5 appm. No such cracking was observed in helium-free control specimens or in specimens containing the lowest helium concentration. In addition to the HAZ cracking, brittle, centerline cracking occurred in the fusion zone of specimens containing 105 and 256 appm helium. Transmission and scanning electron microscopy results indicated that both the HAZ cracking and centerline cracking in the fusion zone resulted from the stress-induced growth and coalescence of cavities initiated at helium bubbles on interfaces. For the HAZ case, the cavity growth rate is modeled and shown to predict the experimentally measured 1-second time lag between peak weld temperature and the onset of cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.S. Rosenbaum:Treatise on Materials Science and Technology, Academic Press, Inc., New York, NY, 1975, vol. 7, pp. 11–90.

    Google Scholar 

  2. J. O. Stiegler and L. K. Mansur:Annu. Rev. Mater. Sci., 1979, vol. 9, pp. 405–54.

    Article  CAS  Google Scholar 

  3. R. S. Barnes:Nature, 1965, vol. 206, pp. 1307–10.

    Article  CAS  Google Scholar 

  4. D. R. Harries:J. Nucl. Mater., 1979, vol. 82, pp. 2–21.

    Article  CAS  Google Scholar 

  5. H. Ullmaier:Nucl. Fusion, 1984, vol. 24, pp. 1039–83.

    CAS  Google Scholar 

  6. J. v. d. Driesch and P. Jung:High Temps. -High Pressures, 1980, vol. 12, pp. 635–41.

    Google Scholar 

  7. J. Laakmann, P. Jung, and W. Uelhoff:Acta Metall., 1987, vol. 35, pp. 2063–69.

    Article  CAS  Google Scholar 

  8. M.H. Hall, Jr., A. G. Hins, J. R. Summers, and D. E. Walker:Weldments: Physical Metallurgy and Failure Phenomena, Proc. 5th Bolton Landing Conf., Aug. 1978, General Electric Co., Schenectady, NY, 1979, pp. 365–78.

    Google Scholar 

  9. S.D. Atkin: inADIP Semiannu. Prog. Rep., Sept. 30, 1981, DOE/ER-0045/7, U.S. Dept. of Energy, Office of Fusion Energy, pp. 110-17.

  10. W. R. Kanne, C.L. Angerman, and B. J. Eberhard: DP-1740, E. I. du Pont de Nemours & Co., Savannah River Laboratory, Aiken, SC, Feb. 1987.

  11. B.A. Chin, R. J. Neuhold, and J. L. Straalsund:Nucl. Technol., 1982, vol. 57, pp. 426–35.

    CAS  Google Scholar 

  12. Annual Books and ASTM Standards, Guide for Simulation of Helium Effects in Irradiated Metals, vol. 12. 02, E492-83, pp. 808-11.

  13. M. R. Louthan, Jr. and R. G. Derrick:Corros. Sci., 1975, vol. 15, pp. 565–77.

    Article  CAS  Google Scholar 

  14. B. M. Oliver, J. G. Bradley, and H. Farrar IV:Geochim. Cosmochim. Acta, 1984, vol. 48, pp. 1759–67.

    Article  CAS  Google Scholar 

  15. P. L. Lane and P. J. Goodhew:J. Nucl. Mater., 1984, vol. 122-123, pp. 509–13.

    Article  Google Scholar 

  16. W. D. Wilson, M. I. Baskes, and C.L. Bisson:Phys. Rev. B, 1976, vol. 13, pp. 2470–78.

    Article  CAS  Google Scholar 

  17. C.L. Bisson and W. D. Wilson:Proc. Tritium Technology in Fission, Fusion and Isotopic Applications, ANS, Dayton, OH, 1980, pp. 78–84.

    Google Scholar 

  18. W. D. Wilson, C.L. Bisson, and M.I. Baskes:Phys. Rev. B, 1981, vol. 24, pp. 11–24.

    Article  Google Scholar 

  19. W. D. Wilson:Radiat. Eff., 1983, vol. 78, pp. 11–24.

    Article  CAS  Google Scholar 

  20. H. T. Lin: Ph. D. Dissertation, Auburn University, Auburn, AL, 1989.

    Google Scholar 

  21. G. W. Greenwood and A. Boltax:J. Nucl. Mater., 1962, vol. 5, pp. 234–40.

    Article  CAS  Google Scholar 

  22. Alan J. Markworth:Metall. Trans., 1973, vol. 4, pp. 2651–56.

    Google Scholar 

  23. W. Beere:Scripta Metall., 1975, vol. 9, pp. 999–1001.

    Article  CAS  Google Scholar 

  24. W. Beere:J. Nucl. Mater., 1984, vol. 120, pp. 88–93.

    Article  Google Scholar 

  25. D. W. James and G. M. Leak:Phil. Mag., 1965, vol. 12, pp. 491–503.

    Article  CAS  Google Scholar 

  26. C.M. Adams, Jr.:Weld. J., 1958, vol. 37, pp. 210s-215s.

    CAS  Google Scholar 

  27. D. Hull and D. Rimmer:Phil. Mag., 1959, vol. 4, pp. 673–87.

    Article  CAS  Google Scholar 

  28. M. V. Speight and J. E. Harris:Met. Sci. J., 1967, vol. 1, pp. 83–85.

    Article  CAS  Google Scholar 

  29. F. H. Vitovec:J. Mater. Sci., 1972, vol. 7, pp. 615–20.

    Article  CAS  Google Scholar 

  30. J. Weertman:Scripta Metall., 1973, vol. 7, pp. 1129–30.

    Article  Google Scholar 

  31. M. V. Speight and W. Beere:Met. Sci. J., 1975, vol. 9, pp. 190–91.

    Article  Google Scholar 

  32. H. Trinkaus:Ber. Bunsen-Ges. Phys. Chem., 1978, vol. 82, pp. 249–53.

    CAS  Google Scholar 

  33. H. Reidel:Fracture at High Temperatures, Springer-Verlag, New York, NY, 1987, pp. 148–214.

    Google Scholar 

  34. D. Rosenthal:Trans. ASME, 1946, vol. 68, p. 849.

    Google Scholar 

  35. ASME Boiler and Pressure Vessel Code, Sect. III-Nuclear Power Plant Components, Div. 1-Appendices, 1971 ed., ASME, New York, NY, 1971.

  36. American National Standard: Nuclear Power Piping, ANSI B31. 7, American National Standard Institute, New York, NY, 1969.

  37. ASME Boiler and Pressure Vessel Code, Sect. III-Nuclear Vessel, Div. 1-Appendices, 1968 ed., ASME, New York, NY, 1968.

  38. C.F. Lucks and H. W. Deem: ASTM STP 227, ASTM, Philadelphia, PA, p. 29.

  39. D. E. Furman:Trans. AIME, 1950, vol. 188, pp. 688–91.

    CAS  Google Scholar 

  40. G. Arthur and J. A. Coulson:J. Nucl. Mater., 1964, vol. 13, pp. 242–53.

    Article  CAS  Google Scholar 

  41. A. Wolfenden and K. Farrell:J. Nucl. Mater., 1969, vol. 29, pp. 133–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H.T., Grossbeck, M.L. & Chin, B.A. Cavity microstructure and kinetics during gas tungsten arc welding of helium-containing stainless steel. Metall Trans A 21, 2585–2596 (1990). https://doi.org/10.1007/BF02647004

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647004

Keywords

Navigation