Skip to main content
Log in

Diffusion composition path patterns in ternary systems

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

A new viewpoint on the analysis of diffusion behavior in ternary systems is presented, in which the matrix of diffusion coefficients is replaced by the “relative penetration tendencies” of the three species. An approximate but physical approach is combined with a linear approximation description of concentration-penetration curves for individual species in diffusion couples. The approximation makes the calculation of the diffusion path and Kirkendall shift for a given ternary couple very simple and straightforward: this in turn facilitates the calculation of a complete pattern of composition paths and Kirkendall shifts on the Gibbs triangle for any given model of relative penetration tendencies of the components. The availability of such patterns makes it easy to recognize and model the relative penetration tendencies in systems for which the composition path pattern has been experimentally determined.

The approach is then successfully applied to generating relatively simple penetration tendency models which reproduce experimental composition path and Kirkendall shift patterns in Cu-Ni-Zn, Fe-Ni-Co, and Cu-Ag-Au.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Kirkaldy:Can. J. Phys., 1958, vol. 36, p. 907.

    Article  CAS  Google Scholar 

  2. Y. Adda and J. Philibert:La Diffusion dans les Solides, vol. 1, Chapter 5, Presses Universitaires de France, 1966.

  3. A. G. Guy, V. Leroy, and T. B. Lindemer:ASM Trans., 1966, vol. 59, p. 517.

    CAS  Google Scholar 

  4. M. A. Dayananda and R. E. Grace:Trans. TMS-AIME, 1965, vol. 233, p. 1287.

    CAS  Google Scholar 

  5. A. G. Guy and V. Leroy:The Electron Microprobe, p. 543, John Wiley, 1966.

  6. C. Matano:Jap. J. Phys., 1933, vol. 8, p. 109.

    CAS  Google Scholar 

  7. F. N. Rhines and R. F. Mehl:Trans. AIME, 1938, vol. 128, p. 205.

    Google Scholar 

  8. J. W. Cahn:Acta Met., 1961, vol. 9, p. 795.

    Article  CAS  Google Scholar 

  9. J. R. Manning:Acta Met., 1967, vol. 15, p. 817.

    Article  CAS  Google Scholar 

  10. R. T. DeHoff and A. G. Guy:Ternary affusion, Final Report, ONR. Contract No. N00014-68-A. 0173-0011, Metallurgy Branch NR 031-697, 1970.

  11. G. F. Johnson: M.S. Thesis, Brooklyn Polytechnic Institute, Brooklyn, N. Y., 1969.

    Google Scholar 

  12. A. Vignes and J. P. Sabatier:Trans. TMS-AIME, 1967, vol. 245, p. 1795.

    Google Scholar 

  13. T. O. Ziebold and R. E. Ogilvie:Trans. TMS-AIME, 1967, vol. 239, p. 942.

    CAS  Google Scholar 

  14. K. J. Anusavice and R. T. DeHoff:Met. Trans., 1972, vol. 3, p. 1279.

    Article  Google Scholar 

  15. J. Askill:Tracer Diffusion Data for Metals, Alloys, and Simple Oxides, IFI/Plénum, New York, 1970.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Materials Science and Engineering, University of Florida. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosopy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeHoff, R.T., Anusavice, K.J. & Wan, C.C. Diffusion composition path patterns in ternary systems. Metall Trans 5, 1113–1126 (1974). https://doi.org/10.1007/BF02644323

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644323

Keywords

Navigation