Skip to main content
Log in

Variation of cost functions in integer programming

  • Published:
Mathematical Programming Submit manuscript

Abstract

We study the problem of minimizingc · x subject toA · x =b. x ≥ 0 andx integral, for a fixed matrixA. Two cost functionsc andc′ are considered equivalent if they give the same optimal solutions for eachb. We construct a polytopeSt(A) whose normal cones are the equivalence classes. Explicit inequality presentations of these cones are given by the reduced Gröbner bases associated withA. The union of the reduced Gröbner bases asc varies (called the universal Gröbner basis) consists precisely of the edge directions ofSt(A). We present geometric algorithms for computingSt(A), the Graver basis, and the universal Gröbner basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.W. Adams and P. Loustaunau,An Introduction to Gröbner Bases. AMS Graduate Studies in Mathematics, Vol. III (Amer. Math. Soc., Providence, RI. 1994).

    MATH  Google Scholar 

  2. D. Bayer and I. Morrison, Gröbner bases and geometric invariant theory I.Journal of Symbolic Computation 6 (1988) 209–217.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Bayer and M. Stillman, MACAULAY A computer algebra system for algebraic geometry. Available by anonymous ftp from zariski.harvard.edu.

  4. L.J. Billera and B. Sturmfels, Fiber polytopes.Annals of Mathematics 135 (1992) 527–549.

    Article  MathSciNet  Google Scholar 

  5. L.J. Billera, P. Filliman and B. Sturmfels, Constructions and complexity of secondary polytopes,Advances in Mathematics 83 (1990) 155–179.

    Article  MATH  MathSciNet  Google Scholar 

  6. L.J. Billera, I.M. Gel’fand and B. Sturmfels, Duality and minors of secondary polyhedra,Journal of Combinatorial Theory B 57 (1993) 258–268.

    Article  MathSciNet  Google Scholar 

  7. A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G. Ziegler,Oriented Matroids (Cambridge University Press, Cambridge, 1993).

    MATH  Google Scholar 

  8. C.E. Blair and R.G. Jeroslow, The value function of an integer program,Mathematical Programming 23 (1982) 237–273.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Conti and C. Traverso, Gröbner bases and integer programming,Proceedings AAECC-9 (New Orleans), Lecture Notes in Computer Science 539 (Springer, Berlin, 1991) 130–139.

    Google Scholar 

  10. W. Cook, A.M.H. Gerards, A. Schrijver and E. Tardos, Sensitivity theorems in integer linear programming,Mathematical Programming 34 (1986) 251–264.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Diaconis and B. Sturmfels, Algebraic algorithms for sampling from conditional distributions,Annals of Statistics, to appear.

  12. P. Diaconis, R. Graham and B. Sturmfels, Primitive partition identities, in: D. Miklós, V.T. Sós and T. Szönyi, eds.,Combinatories. Paul Erdös is Eighty, Janos Bolyai Mathematical Society, Budapest, Hungary (1996) 173–192.

  13. H. Edelsbrunner, J. O’Rourke and R. Seidel. Constructing arrangements of lines and hyperplanes with applications.SIAM Journal on Computing 15 (1986) 341–363.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Eisenbud,Commutative Algehra with a View Towards Algebraic Geometry. Graduate Texts in Mathematics (Springer, Berlin, 1994).

    Google Scholar 

  15. I.M. Gel’fand, M. Kapranov and A. Zelevinsky.Multidimensional Determinants, Discriminants and Resultants (Birkhäuser, Boston, 1994).

    Google Scholar 

  16. J.E. Graver, On the foundations of linear and integer programming I.Mathematical Programming 8 (1975) 207–226.

    Article  MathSciNet  Google Scholar 

  17. S. Hosten and B. Sturmfels, GRIN: An implementation of Gröbner bases for integer programming. in: E. Balas and J. Clausen, eds.,Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science 920 (Springer, Berlin, 1995) 267–276.

    Google Scholar 

  18. R. Kannan, Optimal solution and value of parametric integer programs, in: G. Rinaldi and L. Wolsey, eds.,Proceedings of the Third IPCO Conference (1993) 11–21.

  19. T. Mora and L. Robbiano, The Gröbner fan of an ideal,Journal of Symbolic Computation 6 (1988) 183–208.

    MathSciNet  MATH  Google Scholar 

  20. H.E. Scarf, Neighborhood systems for production sets with indivisibilities.Econometrica 54 (1986) 507–532.

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Schrijver,Theory of Linear and Integer Programming, Wiley-Interscience Series in Discrete Mathematics and Optimization (Wiley-Interscience, New York, 1986).

    MATH  Google Scholar 

  22. D. Shallcross, Neighbors of the origin for four by three matrices.Mathematics of Operations Research 17 (1992) 608–614.

    MATH  MathSciNet  Google Scholar 

  23. B. Sturmfels, Gröbner bases of toric varieties.Tóhoku Math. Journal 43 (1991) 249–261.

    MATH  MathSciNet  Google Scholar 

  24. B. Sturmfels, Asymptotic analysis of toric ideals.Memoirs of the Faculty of Science, Kyushu University Ser. A 46 (1992) 217–228.

    MATH  MathSciNet  Google Scholar 

  25. B. Sturmfels, Sparse elimination theory, in: D. Eisenbud and L. Robbiano, eds.,Computational Algebraic Geometry and Commutative Algebra, Proceedings Conona, June 1991 (Cambridge University Press, Cambridge, 1993) 264–298.

    Google Scholar 

  26. S.R. Tayur, R.R. Thomas and N.R. Natraj. An algebraic geometry algorithm for scheduling in the presence of setups and correlated demands.Mathematical Programming 69 (1995) 369–401.

    MathSciNet  Google Scholar 

  27. R.R. Thomas, A geometric Buchberger algorithm for integer programming.Mathematics of Operations Research 20 (1995) 864–884.

    Article  MATH  MathSciNet  Google Scholar 

  28. D.W. Walkup and R.J.-B. Wets. Lifting projections of convex polyhedra.Pacific Journal of Mathematics 28 (1969) 465–475.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rekha R. Thomas.

Additional information

Research partially supported by the National Science Foundation and the David and Lucile Packard Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sturmfels, B., Thomas, R.R. Variation of cost functions in integer programming. Mathematical Programming 77, 357–387 (1997). https://doi.org/10.1007/BF02614622

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02614622

Keywords

Navigation