Skip to main content
Log in

Photodissociation XeF laser operating in the visible and UV regions

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The results of experimental and theoretical investigations of the photodissociation XeF laser operating in the visible and UV regions and pumped by the radiation of an open discharge initiated by an electric explosion of thin metal wires are reported. A detailed description of the laser design and experimental techniques is given. The analysis of the energy balance in the XeF laser on the basis of measurements of energetic parameters of laser radiation and the pump source are performed. The results of optical investigations of the active medium aimed at the study of the interaction of high-power fluxes of pump radiation with the absorbing active medium are presented. This interaction forms free-running bleaching and inversion waves in the active medium. Spectral, spatial, time, and energy characteristics of laser radiation on theB-X(λ=353 nm) andC-A(λ=480 nm) transitions of XeF are investigated. The instantaneous laser efficiency with respect to the electrical power feeding the pump source is shown to be about 1%. The specific energy of laser radiation on theC-A transition in the blue-green region was 8.5 J/liter for a total laser energy of 14.5 J. The specific energy of radiation on theB-X transition in the UV region was 16.5 J/liter for a total energy of 28 J.

Kinetic models of the optically pumped XeF laser describing its operation on both transitions are developed. They allow calculations of unsaturated gain, output energy, and laser efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. L. Borovich, V. S. Zuev, V. A. Katulin, et al.,High-Current Radiating Discharges and Gas Lasers with Optical Pumping, Progress in Science and Technology, Series on Radioengineering, Vol. 15, VINITI, Moscow (1978).

    Google Scholar 

  2. V. S. Zuev and L. D. Mikheev, “Photochemical lasers,”Laser Science and Technology, Vol. 11, Harwood, Academic GmbH (1991).

    Google Scholar 

  3. N. G. Basov, V. S. Zuev, L. D. Mikheev, et al., “Lasing on theB1/2 −X 2Σ+ transition of the XeF molecule at photodissociation of XeF2,”Kvantovaya Elektron.,4, 2453 (1977) [Sov. J. Quantum Electron.,7, 1401 (1977)].

    Google Scholar 

  4. J. G. Eden, “XeF(BX laser optically excited by incoherent XeF2 (172 nm) radiation,”Opt. Lett.,3, 94 (1978).

    ADS  Google Scholar 

  5. V. S. Zuev, I. F. Isaev, A. V. Kanaev, et al., “Observation of lasing on theB − X transition of the XeF excimer upon photodissociation of KrF2 in mixtures with Xe,”Kvantovaya Elektron.,8, 373 (1981) [Sov. J. Quantum Electron.,11, 221 (1981)].

    Google Scholar 

  6. N. G. Basov, V. S. Zuev, A. V. Kanaev, et al., “Lasing on the bound-freeC(3/2) -A(3/2) transition of the XeF molecule upon photodissociation of XeF2,”Kvantovaya Elektron.,6, 1074 (1979) [Sov. J. Quantum Electron.,9, 629 (1979)].

    Google Scholar 

  7. W. K. Bishel, H. H. Nakano, D. J. Eckstrom, et al., “A new blue-green excimer laser in XeF,”Appl. Phys. Lett.,34, 565 (1979).

    Article  ADS  Google Scholar 

  8. W. K. Bishel, H. H. Nakano, D. J. Eckstrom, et al., “A new blue-green excimer laser in XeF,” in: V. J. Corcoran (ed.),Proceedings of Intern. Conf. on Lasers’78 (Orlando, Florida, December, 1979), McLean, Va. (1979), p. 767.

  9. W. K. Bishel, D. J. Eckstrom, D. L. Huestis, and D. C. Lorents, “Photolytically pumped XeF(C − A) blue-green laser,” in: V. J. Corcoran (ed.),Proceedings of Intern. Conf. on Lasers’79 (Orlando, Florida, December, 1979), McLean, Va. (1980), p. 190.

  10. V. S. Zuev, A. V. Kanaev, L. D. Mikheev, and D. B. Stavrovskii, “Optically pumped XeF laser and spectral analysis of theB 2Σ 2/+1 -X 2Σ 2/+1 laser transition,”Proceedings of the Lebedev Physical Institute,125, Nauka, Moscow (1980), p. 3.

    Google Scholar 

  11. W. K. Bishel, D. J. Eckstrom, H. C. Walker, Jr., and R. A. Tilton, “Photolytically pumped XeF(C − A) laser studies,”J. Appl. Phys.,52, 4429 (1981).

    Article  ADS  Google Scholar 

  12. D. J. Eckstrom and H. C. Walker, Jr., “Multijoule performance of the photolytically pumped XeF(C − A) laser,”IEEE J. Quantum Electron.,QE-18, 176 (1982).

    Article  ADS  Google Scholar 

  13. S. B. Mamaev,Development and Study of the Photodissociation XeF Laser Operating in the Visible and UV Regions of the Spectrum and Pumped by Radiation of a Surface Discharge, Ph.D. Thesis, SPA “Astrofizika,” Moscow (1990); V. S. Zuev, G. N. Kashnikov, and S. B. Mamaev, “Study of the XeF laser optically pumped by radiation of surface discharges,”Kvantovaya Elektron.,19, 1047 (1992) [Sov. J. Quantum Electron,22, 973 (1992)].

    Google Scholar 

  14. N. K. Babinov, I. P. Vinogradov, V. S. Zuev, et al., “Excimer luminescence and excimer lasers with incoherent optical pumping,” in: M. E. Akopyan (ed.),Photoprocesses in the Gas Phase, Progress in Photonics,8, Leningrad State University (1983), p. 51.

  15. V. M. Buchnev, A. D. Klementov, V. M. Nesterov, et al., “Visible XeF* laser with selective optical excitation,”Kvantovaya Elektron.,10, 647 (1983) [Sov. J. Quantum Electron.,13, No. 3 (1983)].

    Google Scholar 

  16. A. V. Adushkin, N. G. Basov, V. A. Danilychev, et al., “Spectrum of the photolytically pumped XeF laser operating on the XeF(B)-XeF(X) transition,”Pis’ma Zh. Tekh. Fiz.,9, 757 (1983).

    Google Scholar 

  17. N. G. Basov, E. P. Glotov, V. A. Danilychev, et al., “Study of theC − A transition of the XeF molecule in XeF2 pumped by excimer radiation,”Kvantovaya Elektron.,11, 1162 (1984) [Sov. J. Quantum Electron.,14, No. 6 (1984)].

    Google Scholar 

  18. V. S. Zuev, L. D. Mikheev, and D. B. Stavrovskii, “Photodissociation XeF laser with an efficiency of about 1%,”Kvantovaya Elektron.,11, 1080 (1984) [Sov. J. Quantum Electron.,14, No. 6 (1984); “On efficiency of the XeF laser with optical pumping,”Kvantovaya Elektron.,11, 1750 (1984) [Sov. J. Quantum Electron.,14, 1174 (1984); D. B. Stavrovskii,Photodissociation XeF Laser, Ph. D. Thesis, Lebedev Physical Institute, Moscow (1987).

    Google Scholar 

  19. S. V. Anisimov, E. M. Zemskov, V. S. Zuev, et al.,Spectral-Selective Dynamical Actinometry of VUV Radiation of a Moving Gasdynamic Shock, Preprint of the Lebedev Physical Institute, No. 140, Moscow (1989).

  20. G. N. Kashnikov, N. P. Kozlov, V. A. Platonov, et al., “XeF(C − A) laser operating in the visible region with optical pumping by radiation of a sectioned creeping discharge,”Kvantovaya Electron.,11, 2129 (1984) [Sov. J. Quantum Electron.,14, 1422 (1984)].

    Google Scholar 

  21. N. G. Basov, V. A. Danilychev, V. A. Dolgikh, et al., “Study of the XeF* laser operating in the UV region of the spectrum with pumping by excimer radiation,”Kvantovaya Elektron.,13, 1808 (1986) [Sov. J. Quantum Electron.,16, No. 9 (1986)].

    Google Scholar 

  22. V. S. Zuev, G. N. Kashnikov, N. P. Kozlov, et al., “Characteristics of the XeF(C − A) laser operating in the visible region of the spectrum with optical pumping by radiation of a creeping discharge,”Kvantovaya Elektron.,13, 2521 (1986) [Sov. J. Quantum Electron.,16, 1665 (1986)].

    Google Scholar 

  23. T. H. Dunning and P. J. Hay, “The covalent and ionic states of the rare gas monofluorides,”J. Chem. Phys.,69, 134 (1978).

    Article  ADS  Google Scholar 

  24. A. L. Smith and P. C. Cobrinsky, “Flash photolysis absorption spectroscopy of xenon fluoride. Vibrational analysis of theB − X transition,”J. Mol. Spectr.,69, 1 (1978).

    Article  ADS  Google Scholar 

  25. P. C. Tellinghuisen, J. Tellinghuisen, J. A. Coxon, et al., “Spectroscopic studies of diatomic noble gas halides. IV. Vibrational and rotational constants for theX, B andD states of XeF,”J. Chem. Phys.,68, 5187 (1978).

    Article  ADS  Google Scholar 

  26. H. Helm, D. L. Huestis, M. J. Dyer, and D. C. Lorents, “Observation of theC(3/2) ⇐X(1/2) transition in XeF,”J. Chem. Phys.,79, 3220 (1983).

    Article  ADS  Google Scholar 

  27. H. C. Brashears and D. W. Setser, “Transfer and quenching rate constants for XeF(B) and XeF(C) states in low vibrational levels,”J. Chem. Phys.,76, 4932 (1982).

    Article  ADS  Google Scholar 

  28. J. Tellinghuisen, P. C. Tellinghuisen, G. C. Tisone, et al., “Spectroscopic studies of diatomic noble gas halides. III. Analysis of a XeF 3500-Å band system,”J. Chem. Phys.,68, 5177 (1978).

    Article  ADS  Google Scholar 

  29. N. K. Bibinov, I. P. Vinogradov, L. D. Mikheev, and D. B. Stavrovskii, “Determination of spectral dependences of the absolute quantum yield of XeF(B,C,D) excimer formation upon photolysis of XeF2,”Kvantovaya Elektron.,8, 1945 (1981) [Sov. J. Quantum Electron.,11, 1178 (1981)].

    Google Scholar 

  30. G. Black, R. L. Sharpless, D. C. Lorents, et al., “XeF2 photodissociation studies. I. Quantum yield and kinetics of XeF(B) and XeF(C),”J. Chem. Phys.,75, 4840 (1981).

    Article  ADS  Google Scholar 

  31. N. K. Bibinov, I. P. Vinogradov, and S. A. Migaev, “XeF(B,C,D) excimer formation upon photoexcitation of a XeF2 mixture with noble gases,”Khim. Fiz.,3, 1685 (1984).

    Google Scholar 

  32. E. G. Pysh, J. Jortner, and S. A. Rice, “Forbidden electronic transitions in XeF2 and XeF4,”J. Chem. Phys.,40, 2018 (1964).

    Article  ADS  Google Scholar 

  33. N. K. Bibinov, I. P. Vinogradov, L. D. Mikheev, and D. B. Stavrovskii, “Ways of formation and decay of the excimer KrF* molecule upon photolysis of KrF2,”Khim. Fiz.,5, 615 (1986).

    Google Scholar 

  34. R. Burnham and N. W. Harris, “Radiative lifetime of theC state of XeF,”J. Chem. Phys.,66, 2742 (1977).

    Article  ADS  Google Scholar 

  35. J. C. Eden and R. W. Waynant, “Lifetime and collisional quenching measurements of XeF2,”Opt. Lett.,2, 13 (1978).

    ADS  Google Scholar 

  36. C. H. Fisher and R. E. Center, “Radiative lifetime and collisional quenching kinetics for the XeF(B1/2) state,”J. Chem. Phys.,69, 2011 (1978).

    Article  ADS  Google Scholar 

  37. E. D. Poliakoff, S. H. Southworth, M. G. White, et al., “Decay dynamics of theCN* (B 2Σ+) and XeF(B 2Σ+ andC 2Π2/2) states,”J. Chem. Phys.,72, 1786 (1980).

    Article  ADS  Google Scholar 

  38. I. V. Tomov, S. R. Fedosejev, M. C. Richardson, et al., “Picosecond gain and saturation measurements of the 353 nm XeF laser line,”Appl. Phys. Lett.,31, 787 (1977).

    Article  ADS  Google Scholar 

  39. R. W. Waynant and J. G. Eden, “Spontaneous emission lifetime of theCA band of the XeF molecule,”IEEE J. Quantum Electron.,QE-15, 61 (1979).

    Article  ADS  Google Scholar 

  40. D. W. Trainor, J. H. Jacob, and M. Rokni, “Electron and heavy particle temperature dependent quenching rate constants of XeF,”J. Chem. Phys.,72, 3646 (1980).

    Article  ADS  Google Scholar 

  41. R. Sauerbrey, W. Walter, F. K. Tittel, and W. L. Wilson, Jr., “Kinetic processes of electron beam generated XeF excimers,”J. Chem. Phys.,78, 735 (1983).

    Article  ADS  Google Scholar 

  42. S. F. Fulgham, M. S. Feld, and A. Javan, “A multilevel model of XeF ground state kinetics,”IEEE J. Quantum Electron.,QE-16, 815 (1980).

    Article  ADS  Google Scholar 

  43. N. G. Basov, V. A. Danilychev, V. A. Dolgikh, et al., “The role of photoionization in excimer radiation pumping of the XeF* laser,”Pisma Zh. Tekh. Fiz.,12, 197 (1986).

    Google Scholar 

  44. H. T. Powell and R. E. Wilder, “XeF lasers using XeF2 photodissociation,” in:Topical Meeting on Excimer Lasers, Charleston, USA (1978), paper No. 19.

  45. F. Schreiner, G. N. McDonald, and C. L. Chernick, “The vapor pressure and melting points of xenon difluoride and xenon tetrafluoride,”J. Chem. Phys.,72, 1162 (1968).

    Article  Google Scholar 

  46. E. G. Wilson, J. Jortner, and S. A. Rice, “Far ultraviolet spectroscopic study of xenon difluoride,”J. Am. Chem. Soc.,85, 813 (1963).

    Article  Google Scholar 

  47. P. A. Agron, G. M. Begun, H. A. Levy, et al., “Xenon difluoride and the nature of the xenon-fluoride bond,”Science,139, 842 (1963).

    Article  ADS  Google Scholar 

  48. A. B. Niding and V. B. Sokolov, “Compounds of noble gases,”Uspekhi Khim.,43, 2146 (1974).

    Google Scholar 

  49. G. N. Makeev, V. F. Sinyanskii, and B. M. Smirnov, “Absorption spectra of some fluorides in the near UV region,”Doklady Akad. Nauk,222, 151 (1975).

    Google Scholar 

  50. A. V. Kanaev,Lasing upon Photochemical Reactions of Halides and Their Derivatives with Noble Gases and Nitrogen, Ph. D. Thesis, Lebedev Physical Institute, Moscow (1986).

    Google Scholar 

  51. N. N. Ogurtsova, I. V. Podmoshensky, and M. N. Demidov, “Pulse light source with radiation similar to the radiation of an absolutely black body with a temperature of ∼40,000°,”Opt. Mekh. Promyshl., No. 1, 1 (1960).

  52. B. L. Borovich, V. S. Zuev, V. A. Katulin, et al., “Characteristics of an iodine laser amplifier of short pulses,”Kvantovaya Elektron.,2, 1282 (1975) [Sov. J. Quantum Electron.,5, No. 6 (1975)].

    Google Scholar 

  53. V. S. Zuev, A. V. Kanaev, and L. D. Mikheev, “Optical inhomogeneities in the bleaching wave in the active medium of a photochemical laser,”Kvantovaya Electron.,10, 1868 (1983) [Sov. J. Quantum Electron.,13, 1232 (1983)].

    Google Scholar 

  54. V. S. Zuev, K. S. Korol’kov, O. Yu. Nosach, and E. P. Orlov, “Experimental study of internal losses in iodine lasers pumped by UV radiation of an open high-current discharge,”Kvantovaya Elektron.,7, 2604 (1980) [Sov. J. Quantum Electron.,10, No. 12, (1980)].

    Google Scholar 

  55. R. F. Lutomirski, “Blue-green laser for air to water applications,” in: V. J. Corcoran (ed.),Proceedings of Intern. Conf. on Lasers’78 (Orlando, Florida, December, 1978), McLean, Va. (1979), p. 60.

  56. C. H. Fisher, R. E. Center, G. J. Mullaney, and J. P. McDaniel, “Multipass amplification and tuning of the blue-green XeF(C → A) laser,”Appl. Phys. Lett.,35, 901 (1979).

    Article  ADS  Google Scholar 

  57. J. Liegel, F. K. Tittel, W. L. Wilson, Jr., and G. Marowsky, “Continuous broadband tuning of an electron-beam-pumped XeF(C → A) laser,”Appl. Phys. Lett.,39, 369 (1981).

    Article  ADS  Google Scholar 

  58. F. K. Tittel, G. Marowsky, W. L. Nighan, et al., “Injection-controlled tuning of an electron-beam-pumped XeF(C → A) laser,”IEEE J. Quantum Electron.,QE-22, 2168 (1986).

    Article  ADS  Google Scholar 

  59. V. P. Kalinin, V. V. Lyubimov, and I. B. Orlova, “The influence of mirror deformation on the angular distribution of radiation of a laser with plane mirrors,”Zh. Prikl. Spektrosk.,12, 1019 (1970).

    Google Scholar 

  60. G. A. Kirillov, S. B. Kormer, G. G. Kochemasov, et al., “Study of radiation divergence of a photodissociation laser with a nonuniform active medium,”Kvantovaya Elektron.,1, 666 (1975) [Sov. J. Quantum Electron.,4, No. 4 (1975)].

    Google Scholar 

  61. N. G. Basov, V. S. Zuev, K. S. Korol’kov, et al., “A new type of induced scattering of light using excitation of partial oscillations of a medium due to the enthalpy of laser-controlled processes,”Izv. Akad. Nauk, Ser. Fiz.,46, 1534 (1982).

    Google Scholar 

  62. J. H. Jacob, D. W. Trainor, M. Rokni, and J. C. Hsia, “Accessibility of the KrF* (B) state to laser photons,”Appl. Phys. Lett.,37, 522 (1980).

    Article  ADS  Google Scholar 

  63. J. Ebert, H. Pannhorst, H. Kuster, and H. Welling, “Scatter losses of broadband interference coatings,”Appl. Opt.,18, 818 (1979).

    ADS  Google Scholar 

  64. V. S. Zuev and L. D Mikheev,Accompanying Waves of Various Nature in Photochemical Lasers and Their Possible Applications, Preprint of the Lebedev Physical Institute, No. 190, Moscow (1990).

  65. L. D. Mikheev, “Possibility of amplification of a femtosecond pulse up to an energy of 1 kJ,”Laser Particle Beams,10, 473 (1992).

    Article  Google Scholar 

  66. T. Hofmann, T. E. Sharp, C. B. Dane, et al., “Characterization of an ultrahigh peak power XeF(C-A) excimer laser system,”IEEE J. Quantum Electron.,28, 1366 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from a manuscript of the P. N. Lebedev Physical Institute, Russian Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikheev, L.D., Stavrovskii, D.B. & Zuev, V.S. Photodissociation XeF laser operating in the visible and UV regions. J Russ Laser Res 16, 427–475 (1995). https://doi.org/10.1007/BF02581226

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02581226

Keywords

Navigation