Skip to main content
Log in

Ultrastructural features of well-preserved and injured sieve elements: Minute clamps keep the phloem transport conduits free for mass flow

Protoplasma Aims and scope Submit manuscript

Summary

After chemical fixation following two different preparation procedures, the ultrastructure of mature sieve elements (SEs) was systematically compared in the transport phloem ofVicia faba leaves andLycopersicon esculentum internodes. The SEs in samples obtained by gentle preparation were well preserved, while those in conventionally prepared samples were generally injured. (1) In well-preserved SEs, parietal P-proteins were associated with cisternae of the SE endoplasmic reticulum (ER). Additionally, theV. faba SEs had crystalline P-proteins, and a homogeneous network of filamentous P-proteins occurred in the lumen of theL. esculentum SEs. In injured SEs, all P-proteins were dispersed. (2) In well-preserved SEs, stacked ER cisternae associated with P-proteins lay also on the sieve-plate walls, but passages were kept free in front of the sieve pores. Injured SEs lacked these orderly arranged deposits. Instead, irregular filamentous and membranous materials occluded the sieve pores. (3) In well-preserved SEs, the sieve-pore lumen was free of obstructions, apart from small, lateral coatings of P-proteins. Sieve pores in injured SEs were always occluded. (4) The SE organelles and, in tomato SEs, also the parietal ER located at the longitudinal walls were firmly attached in the SE periphery and stayed in place after injury. The stable parietal attachment is likely exerted by minute, clamplike structures which link the outer membranes of the SE components with one another or to the SE plasma membrane. Single, straight clamps with a length of about 7 nm anchored the SE components directly to the SE plasma membrane. The connections between adjacent SE organelles and/or parietal ER cisternae were mostly twice as long (about 15 nm) and often were branched. Presumably, the long, branched clamps were constituted by the interaction of opposite short clamps. The ultrastructural results are discussed with respect to SE functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CC:

companion cell

CLSM:

confocal laser-scanning microscopy

ER:

endoplasmic reticulum

SE:

sieve element

References

  • Anderson R, Cronshaw J (1969) The effects of pressure release on the sieve plate pores ofNicotiana. J Ultrastruct Res 29: 50–59

    Article  PubMed  CAS  Google Scholar 

  • Arsanto JP (1986) Ca2+-binding sites and phosphatase activities in sieve element reticulum and P-protein of chick-pea phloem: a cytochemical and X-ray microanalysis survey. Protoplasma 132: 160–171

    Article  CAS  Google Scholar 

  • Behnke HD (1981) Sieve-element characters. Nord J Bot 1: 381–400

    Google Scholar 

  • — (1991a) Distribution and evolution of forms and types of sieve-element plastids in dicotyledons. Aliso 13: 167–182

    Google Scholar 

  • — (1991b) Nondispersive protein bodies in sieve elements: a survey and review of their origin, distribution and taxonomic significance. IAWA Bull NS 12: 143–175

    Google Scholar 

  • —, Sjolund RD (eds) (1990) Sieve elements: comparative structures, induction and development. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Bush DS (1993) Regulation of cytosolic calcium in plants. Plant Physiol 103: 7–13

    PubMed  CAS  Google Scholar 

  • Cronshaw J, Esau K (1968) P-protein in the phloem ofCucurbita I: the development of P-protein bodies. J Cell Biol 38: 25–39

    Article  PubMed  CAS  Google Scholar 

  • —, Sabnis DD (1990) Phloem proteins. In: Behnke HD, Sjolund RD (eds) Sieve elements: comparative structures, induction and development. Springer, Berlin Heidelberg New York Tokyo, pp 257–283

    Google Scholar 

  • Ding B, Turgeon R, Parthasarathy MV (1991) Routine cryofixation of plant tissue by propane jet freezing for freeze substitution. J Electron Microsc Techn 19: 107–117

    Article  CAS  Google Scholar 

  • Dörr I (1972) Der Anschluß derCuscuta-Hyphen an die Siebröhren ihrer Wirtspflanzen. Protoplasma 75: 167–184

    Article  Google Scholar 

  • Esau K (1969) The phloem. Borntraeger, Berlin (Encyclopedia of plant anatomy, vol 5, 2)

    Google Scholar 

  • —, Thorsch J (1985) Sieve plate pores and plasmodesmata, the communication channels of the symplast: ultrastructural aspects and developmental relations. Am J Bot 72: 1641–1653

    Article  Google Scholar 

  • Evert RF (1982) Sieve-tube structure in relation to function. Bioscience 32: 789–795

    Article  Google Scholar 

  • — (1990) Dicotyledons. In: Behnke HD, Sjolund RD (eds) Sieve elements: comparative structures, induction and development. Springer, Berlin Heidelberg New York Tokyo, pp 103–137

    Google Scholar 

  • —, Russin WA (1991) Aspects of the sieve element structure inZea mays L. In: Bonnemain JL, Delrot S, Lucas WJ, Dainty J (eds) Recent advances in phloem transport and assimilate compartmentation. Ouest Editions, Nantes, France, pp 47–57

    Google Scholar 

  • —, Eschrich W, Eichhorn SE (1973) P-protein distribution in mature sieve elements ofCucurbita maxima. Planta 109: 193–210

    Article  CAS  Google Scholar 

  • Fischer DB (1990) Measurement of phloem transport rates by an indicator-dilution technique. Plant Physiol 100: 1433–1441

    Article  Google Scholar 

  • Guo YH, Hua BG, Yu FY, Leng Q, Lou CH (1998) The effects of microfilament and microtubule inhibitors and periodic impulses on phloem transport in pea seedling. Chin Sci Bull 43: 312–315

    Article  Google Scholar 

  • Hohenberg H, Tobler M, Müller M (1996) High-pressure freezing of tissue obtained by fine-needle biopsis. J Microsc 183: 133–139

    Article  PubMed  CAS  Google Scholar 

  • Hughes JE, Gunning BES (1980) Glutaraldehyde-induced deposition of callose. Can J Bot 58: 250–257

    CAS  Google Scholar 

  • Kleinig H, Dörr I, Weber C, Kollmann R (1971) Filamentous proteins from plant sieve tubes. Nat New Biol 229: 152–153

    Article  PubMed  CAS  Google Scholar 

  • Knoblauch M, van Bel AJE (1998) Sieve tubes in action. Plant Cell 10: 35–50

    Article  CAS  Google Scholar 

  • Kollmann R (1973) Cytologie des Phloems. In: Hirsch GC, Ruska H, Sitte P (eds) Grundlagen der Cytologie. Fischer, Jena, pp 479–505

    Google Scholar 

  • — (1980) Fine structural and biochemical characterization of phloem proteins. Can J Bot 58: 802–806

    CAS  Google Scholar 

  • —, Glockmann C (1991) Studies on graft unions III: on the mechanism of secondary formation of plasmodesmata at the graft interface. Protoplasma 165: 71–85

    Article  Google Scholar 

  • Lawton DM (1978) P-protein crystals do not disperse in uninjured sieve elements in roots of runner bean (Phaseolus multiflorus) fixed with glutaraldehyde. Ann Bot 42: 353–361

    Google Scholar 

  • Münch E (1930) Die Stoffbewegung in der Pflanze. Gustav Fischer, Jena

    Google Scholar 

  • Olesen P, Robards AW (1990) The neck region of plasmodesmata: general architecture and some functional aspects. In: Robards AW, Lucas WJ, Pitts JD, Jongsma HJ, Spray DC (eds) Parallels in cell to cell junctions in plants and animals. Springer, Berlin Heidelberg New York Tokyo, pp 145–170 (NATO ASI series, series H, vol 46)

    Google Scholar 

  • Overall R (1999) Substructure of plasmodesmata. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in cell communication. Springer, Berlin Heidelberg New York Tokyo, pp 129–148

    Google Scholar 

  • Powell AJ, Peace GW, Slabas AR, Lloyd CW (1982) The detergent-resistant cytoskeleton of higher plant protoplasts contains nucleus-accociated fibrillar bundles in addition to microtubules. J Cell Sci 56: 319–335

    PubMed  CAS  Google Scholar 

  • Radford JE, Vesk M, Overall RL (1998) Callose deposition at plasmodesmata. Protoplasma 201: 30–37

    Article  CAS  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17: 208–212

    Article  PubMed  CAS  Google Scholar 

  • Sabnis DD, Sabnis HM (1995) Phloem proteins: structure, biochemistry and function. In: Iqbal M (ed) The cambial derivatives. Borntraeger, Berlin, pp 271–292 (Encyclopedia of plant anatomy, vol 9, 4)

    Google Scholar 

  • Schobert C, Baker L, Szederkényi J, Großmann P, Komor E, Hayashi H, Chino M, Lucas WJ (1998) Identification of immunologically related proteins in sieve-tube exudate collected from monocotyledonous and dicotyledonous plants. Planta 206: 245–252

    Article  CAS  Google Scholar 

  • Schulz A (1992) Living sieve cells of conifers as visualized by confocal, laser-scanning fluorescence microscopy. Protoplasma 166: 153–164

    Article  Google Scholar 

  • — (1996) Experimentelle Untersuchungen zur Entwicklung und Funktion der Assimilatleitbahnen in höheren Pflanzen. Habilitation thesis, Universität Kiel, Kiel, Federal Republic of Germany

    Google Scholar 

  • — (1998) Phloem: structure related to function. Prog Bot 59: 429–475

    Google Scholar 

  • Shih CY, Currier HE (1969) Fine structure of phloem cells in relation to translocation in the cotton seedlings. Am J Bot 56: 464–472

    Article  Google Scholar 

  • Sjolund RD (1990) Calcium and phloem sieve element membranes. Curr Top Plant Biochem Physiol 9: 101–118

    CAS  Google Scholar 

  • — (1997) The phloem sieve element: a river runs through it. Plant Cell 9: 1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Spanner DC (1978) Sieve-plate pores, open or occluded? A critical review. Plant Cell Environ 1: 7–20

    Article  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11: 1151–1165

    Article  PubMed  CAS  Google Scholar 

  • Thompson GA (1999) P-Protein trafficking through plasmodesmata. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in cell communication. Springer, Berlin Heidelberg New York Tokyo, pp 295–313

    Google Scholar 

  • Thorsch J, Esau K (1981a) Changes in the endoplasmic reticulum during differentiation of a sieve element inGossypium hirsutum. J Ultrastruct Res 74: 183–194

    Article  PubMed  CAS  Google Scholar 

  • — — (1981b) Nuclear degeneration and the association of endoplasmic reticulum with the nuclear envelope and microtubules in maturing sieve elements ofGossypium hirtusum. J Ultrastruct Res 74: 195–204

    Article  PubMed  CAS  Google Scholar 

  • — — (1981c) Ultrastructural studies of protophloem sieve elements inGossypium hirsutum. J Ultrastruct Res 75: 339–351

    Article  PubMed  CAS  Google Scholar 

  • van Bel AJE (1993) The transport phloem: specifics of its functioning. Prog Bot 54: 134–150

    Google Scholar 

  • — (1996) Interaction between sieve element and companion cell and the consequences for photoassimilate distribution: two structural hardware frames with associated physiological software packages in dicotyledons? J Exp Bot 47: 1129–1140

    Google Scholar 

  • — (1999) Evolution, polymorphology and multifunctionality of the phloem system. Persp Plant Ecol Evol Syst 2: 163–184

    Article  Google Scholar 

  • van der Schoot C, van Bel AJE (1989) Glass microelectrode measurements of sieve tube membrane potentials in internode discs and petiole strips of tomato (Solanum lycopersicon L.). Protoplasma 149: 144–154

    Article  Google Scholar 

  • Wergin WP, Newcomb EH (1970) Formation and dispersal of crystalline P-protein in sieve elements of soybean (Glycine max L.). Protoplasma 71: 365–388

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehlers, K., Knoblauch, M. & van Bel, A.J.E. Ultrastructural features of well-preserved and injured sieve elements: Minute clamps keep the phloem transport conduits free for mass flow. Protoplasma 214, 80–92 (2000). https://doi.org/10.1007/BF02524265

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02524265

Keywords

Navigation