Skip to main content
Log in

Analysis of extrachromosomal structures containing human centromeric alphoid satellite DNA sequences in mouse cells

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Yeast artificial chromosomes (YACs) spanning the centromeric region of the human Y chromosome were introduced into mouse LA-9 cells by spheroplast fusion in order to determine whether they would form mammalian artificial chromosomes. In about 50% of the cell lines generated, the YAC DNA was associated with circular extrachromosomal structures. These episomes were only present in a proportion of the cells, usually at high copy number, and were lost rapidly in the absence of selection. These observations suggest that, despite the presence of centromeric sequences, the structures were not segregating efficiently and thus were not forming artificial chromosomes. However, extrachromosomal structures containing alphoid DNA appeared cytogenetically smaller than those lacking it, as long as yeast DNA was also absent. This suggests that alphoid DNA can generate the condensed chromatin structure at the centromere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allshire RC, Cranston G, Gosden JR, Maule JC, Hastie ND, Fantes PA (1987) A fission yeast chromosome can replicate autonomously in mouse cells. Cell 50: 391–403

    Article  PubMed  CAS  Google Scholar 

  • Baum M, Ngan VK, Clarke L (1994) The centromeric K-type repeat and the central core are together sufficient to establish a functionalSchizosaccharomyces pombe centromere. Mol Biol Cell 5: 747–761

    PubMed  CAS  Google Scholar 

  • Bayne RAL, Broccoli D, Taggart MH, Thomson EJ, Farr CJ, Cooke HJ (1994) Sandwiching of a gene within 12 kb of a functional telomere and alpha satellite does not result in silencing. Hum Mol Genet 3: 539–546

    PubMed  CAS  Google Scholar 

  • Blennow E, Telenius H, de Vos D, Larsson C, Herriksson P, Johansson O, Carter NP, Nordenskjold M (1994) Tetrasomy 15q: two marker chromosomes with no detectable alpha-satellite DNA. Am J Hum Genet 54: 877–883

    PubMed  CAS  Google Scholar 

  • Brown KE, Barnett MA, Burgtorf C, Shaw P, Buckle VJ, Brown WRA (1994) Dissecting the centromere of the human Y chromosome with cloned telomeric DNA. Hum Mol Genet 3: 1227–1237

    PubMed  CAS  Google Scholar 

  • Brown W, Tyler-Smith C (1995) Centromere activation. Trends Genet 11: 337–339

    Article  PubMed  CAS  Google Scholar 

  • Burke DT, Carle GF, Olson MV (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236: 806–12

    Article  PubMed  CAS  Google Scholar 

  • Cohen D, Chumakov I, Weissenbach J (1993) A first-generation physical map of the human genome. Nature 366: 698–701

    Article  PubMed  CAS  Google Scholar 

  • Cooke CA, Bernat RL, Earnshaw WC (1990) CENP-B: a major human centromere protein located beneath the kinetochore. J Cell Biol 110: 1475–1488

    Article  PubMed  CAS  Google Scholar 

  • Cooper KF, Fisher RB, Tyler-Smith C (1992) Structure of the pericentric long arm region of the human Y chromosome. J Mol Biol 228: 421–432

    Article  PubMed  CAS  Google Scholar 

  • Cooper KF, Fisher RB, Tyler-Smith C (1993) Structure of the sequences adjacent to the centromeric alphoid satellite DNA array on the human Y chromosome. J Mol Biol 230: 787–799

    Article  PubMed  CAS  Google Scholar 

  • Cramer JH, Farrelly FW, Rownd RH (1976) Restriction endonuclease analysis of ribosomal DNA fromSaccharomyces cerevisiae. Mol Gen Genet 148: 233–241

    Article  PubMed  CAS  Google Scholar 

  • Den Dunnen JT, Grootscholten PM, Dauwerse, JG, Walker AP, Monaco AP, Butler R, Anand R, Coffey AJ, Bentley DR, Steensma HY, Van Ommen GJB (1992) Reconstruction of the 2.4Mb DMD-gene by homologous recombination. Hum Mol Genet 1: 19–28

    Google Scholar 

  • Earnshaw WC, Sullivan KF, Machlin PS, Cooke CA, Kaiser DA, Pollard TD, Rothfield NF, Cleveland DW (1987) Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J Cell Biol 104: 817–829

    Article  PubMed  CAS  Google Scholar 

  • Featherstone T, Huxley C (1993) Extrachromosomal maintenance and amplification of yeast artificial chromosome DNA in mouse cells. Genomics 17: 267–278

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1984) A technique for radiolabelling DNA restriction fragments to high specific activity. Anal Biochem 137: 266–267

    Article  PubMed  CAS  Google Scholar 

  • Gaff C, du Sart D, Kalitsis P, Iannello R, Nagy A, Choo KHA (1994) A novel nuclear protein binds centromeric alpha satellite DNA. Hum Mol Genet 3: 711–716

    PubMed  CAS  Google Scholar 

  • Green ED, Olson MV (1990) Chromosomal region of the cystic fibrosis gene in yeast artificial chromosomes: a model for human genome mapping. Science 250: 94–8

    Article  PubMed  CAS  Google Scholar 

  • Haaf T, Warburton PE, Willard HF (1992) Integration of human α-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation. Cell 70: 681–696

    Article  PubMed  CAS  Google Scholar 

  • Hahnenberger KM, Carbon J, Clarke L (1991) Identification of DNA regions required for mitotic and meiotic functions with-in the centromere ofSchizosaccharomyces pombe chromosome I. Mol Cell Biol 11: 2206–2215

    PubMed  CAS  Google Scholar 

  • Hegemann JH, Fleig UN (1993) The centromere of budding yeast. BioEssays 15: 451–460

    Article  PubMed  CAS  Google Scholar 

  • Hill A, Bloom K (1987) Genetic manipulation of centromere function. Mol Cell Biol 7: 2397–2405

    PubMed  CAS  Google Scholar 

  • Huxley C, Green ED, Dunham I (1990) Rapid assessment ofS. cerevisiae mating type by PCR. Trends Genet 6: 236

    Article  PubMed  CAS  Google Scholar 

  • Kipling D, Mitchell AR, Masumoto H, Wilson HE, Nicol L, Cooke HJ (1995) CENP-B binds a novel centromeric sequence in the Asian mouseMus caroli. Mol Cell Biol 15: 4009–4020

    PubMed  CAS  Google Scholar 

  • Koshland D, Rutledge L, Fitzgerlad-Hayes M, Hartwell LH (1987) A genetic analysis of dicentric minichromosomes inSaccharomyces cerevisiae. Cell 48: 801–812

    Article  PubMed  CAS  Google Scholar 

  • Lanini L, McKeon F (1995) Domains required for CENP-C assembly at the kinetochore. Mol Biol Cell 6: 1049–1059

    PubMed  CAS  Google Scholar 

  • Larin Z, Lerach H (1990) Yeast artificial chromosomes: An alternative approach to the molecular analysis of mouse developmental mutations. Genet Res 56: 203–208

    Article  PubMed  CAS  Google Scholar 

  • Larin Z, Fricker MD, Tyler-Smith C (1994) De novo formation of several features of a centromere following introduction of a Y alphoid YAC into mammalian cells. Hum Mol Genet 3: 689–695

    PubMed  CAS  Google Scholar 

  • Larin Z, Monaco AP, Lerach H (1995) Generation of large insert YAC libraries. In: Markie D (ed) Methods in molecular biology, vol 54: YAC protocols. Human Press, Totowa, NJ, pp 1–11

    Chapter  Google Scholar 

  • Lee JT, Murgia A, Sosnoski D, Olivos IM, Nussbaum RL (1992) Construction and characterization of a yeast artificial chromosome library for Xpter-Xq27.3: a systematic determination of cocloning rate and X-chromosome representation. Genomics 12: 526–533

    Article  PubMed  CAS  Google Scholar 

  • Mann C, Davis RW (1983) Instability of dicentric plasmids in yeast. Proc Natl Acad Sci USA 80: 228–232

    Article  PubMed  CAS  Google Scholar 

  • Marcus M, Tantravahi R, Dev VG, Miller DA, Miller OJ (1976) Human-mouse cell hybrid with human multiple Y chromosomes. Nature 262: 63–65

    Article  PubMed  CAS  Google Scholar 

  • Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 109: 1963–1973

    Article  PubMed  CAS  Google Scholar 

  • McManus J, Perry P, Sumner AT, Wright DM, Thomson EJ, Allshire RC, Hastie ND, Bickmore WA (1994) Unusual chromosome structure of fission yeast DNA in mouse cells. J Cell Sci 107: 469–486

    PubMed  CAS  Google Scholar 

  • Murakami S, Matsumoto T, Niw O, Yanagida M (1991) Structure of the fission yeast centromere cen3; direct analysis of the reiterated inverted region. Chromosoma 101: 214–221

    Article  PubMed  CAS  Google Scholar 

  • Murray AW, Szostak JW (1983) Construction of artificial chromosomes in yeast. Nature 305: 189–193

    Article  PubMed  CAS  Google Scholar 

  • Neil DL, Villasante A, Fisher R, Vetrie D, Cox B, Tyler-Smith C (1990) Structural instability of human tandemly repeated DNA sequences cloned in yeast artificial chromosome vectors. Nucleic Acids Res 18: 1421–1428

    PubMed  CAS  Google Scholar 

  • Ohashi H, Wakui K, Ogawa K, Okano T, Niikawa N, Fukshima Y (1994) A stable acentric marker chromosome: possible existence of an intercalary ancient centromere at distal 8p. Am J Hum Genet 55: 1202–1208

    PubMed  CAS  Google Scholar 

  • Petrovic V, Nasioulas S, Chow CW, Voullaire L, Schmidt M, Dahl H (1992) Minute Y chromosome derived marker in a child with gonadoblastoma: cytogenetic and DNA studies. J Med Genet 29: 542–546

    Article  PubMed  CAS  Google Scholar 

  • Saitoh H, Tomkiel J, Cooke CA, Ratrie H, Maurer M, Rothfield NF, Earnshaw WC (1992) CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70: 115–125

    Article  PubMed  CAS  Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Southern EM (1975) Detection of specific DNA fragments among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517

    Article  PubMed  CAS  Google Scholar 

  • Southern EM, Anand R, Brown WRA, Fletcher DS (1987) A model for the separation of large DNA molecules by crossed field gel electrophoresis. Nucleic Acids Res 15: 5925–5943

    PubMed  CAS  Google Scholar 

  • Steiner NC, Clarke L (1994) A novel epigenetic effect can alter centromere function in fission yeast. Cell 79: 865–874

    Article  PubMed  CAS  Google Scholar 

  • Steiner NC, Hahnenberger KM, Clarke L (1993) Centormeres of the fission yeastSchizosaccharomyces pombe are highly variable genetic loci. Mol Cell Biol 13: 4578–4587

    PubMed  CAS  Google Scholar 

  • Sullivan KF, Glass CA (1991) CENP-B is a highly conserved mammalian centromere protein with homology to the helixloop-helix family of proteins. Chromosoma 100: 360–370

    Article  PubMed  CAS  Google Scholar 

  • Taylor SS (1995) Manipulation of YACs to construct a Mammalian Artificial Chromosome. DPhil Thesis, University of Oxford

  • Taylor SS, Larin Z, Tyler-Smith C (1994) Addition of functional human telomeres to YAcs. Hum Mol Genet 3: 1383–1386

    PubMed  CAS  Google Scholar 

  • Tyler-Smith C, Brown WRA (1987) Structure of the major block of alphoid satellite DNA on the human Y chromosome. J Mol Biol 195: 457–470

    Article  PubMed  CAS  Google Scholar 

  • Tyler-Smith C, Willard HF (1993) Mammalian chromosome structure. Curr Opin Genet Dev 3: 390–397

    Article  PubMed  CAS  Google Scholar 

  • Tyler-Smith C, Oakey RJ, Larin Z, Fisher RB, Crocker M, Affara NA, Ferguson-Smith MA, Muenke M, Zuffardi O, Jobling MA (1993) Localization of DNA sequences required for human centromere function through an analysis of rearranged Y chromosomes. Nat Genet 5: 368–375

    Article  PubMed  CAS  Google Scholar 

  • Vergnaud G, Page DC, Simmler MC, Brown L, Rouyer F, Noel B, Botstein D, de la Chapelle A, Weissenbach J (1986) A deletion map of the human Y chromosome based on DNA hybridization. Am J Hum Genet 38: 109–124

    PubMed  CAS  Google Scholar 

  • Voullaire LE, Slater HR, Petrovic V, Choo KHA (1993) A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet 52: 1153–1163

    PubMed  CAS  Google Scholar 

  • Yoda K, Kitagawa K, Masumoto H, Muro Y, Okazaki T (1992) A human centromere protein, CENP-B, has a DNA binding domain containing four potential α helices at the NH2 terminus, which is separable from dimerizing activity. J Cell Biol 119: 1413–1427

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Edited by: H. F. Willard

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, S.S., Larin, Z. & Tyler-Smith, C. Analysis of extrachromosomal structures containing human centromeric alphoid satellite DNA sequences in mouse cells. Chromosoma 105, 70–81 (1996). https://doi.org/10.1007/BF02509516

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02509516

Keywords

Navigation