Skip to main content
Log in

Embedding and unsolvability theorems for modular lattices

  • Published:
algebra universalis Aims and scope Submit manuscript

Abstract

LetR be a nontrivial ring with 1 and δ a cardinal. Let,L(R, δ) denote the lattice of submodules of a free unitaryR-module on δ generators. Let ℳ be the variety of modular lattices. A lattice isR-representable if embeddable in the lattice of submodules of someR-module; ℒ(R) denotes the quasivariety of allR-representable lattices. Let ω denote aleph-null, and let a (m, n) presentation havem generators andn relations,m, n≤ω.

THEOREM. There exists a (5, 1) modular lattice presentation having a recursively unsolvable word problem for any quasivarietyV,V ⊂ ℳ, such thatL(R, ω) is inV.

THEOREM. IfL is a denumerable sublattice ofL(R, δ), then it is embeddable in some sublatticeK ofL(R*) having five generators, where δ*=δ for infinite δ and δ*=4δ(m+1) if δ is finite andL has a set ofm generators.

THEOREM. The free ℒ(R)-lattice on ω generators is embeddable in the free ℒ(R)-lattice on five generators.

THEOREM. IfL has an (m, n), ℒ(R)-presentation for denumerablem and finiten, thenL is embeddable in someK having a (5, 1) ℒ(R)-presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Birkhoff, “Lattice Theory”. Third ed., Amer. Math. Soc. Colloquium Publications XXV, Providence, R.I., 1967.

  2. S. Brenner,On four subspaces of a vector space. J. of Algebra29 (1974), 587–599.

    Article  MATH  MathSciNet  Google Scholar 

  3. H.-B. Brinkmann andD. Puppe, “Abelsche und exakte Kategorien, Korrespondenzen”. Lecture Notes in Mathematics 96, Springer-Verlag, Berlin, Heidelberg and New York, 1969.

    MATH  Google Scholar 

  4. W. Craig,On axiomatizability within a system. J. of Symbolic Logic18 (1953), 30–32.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Davis, “Computability and Unsolvability”. McGraw-Hill, New York, Toronto and London, 1958.

    MATH  Google Scholar 

  6. R. A. Dean,Component subsets of the free lattice on n generators. Proc. Amer. Math. Soc.,7 (1956), 220–226.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Freese,Planar sublattices of FM(4). Algebra Universalis6 (1976), 69–72.

    MATH  MathSciNet  Google Scholar 

  8. G. Grätzer, “Universal Algebra”. Van Nostrand, Princeton, N. J., 1968.

    MATH  Google Scholar 

  9. C. Herrmann, On the equational theory of submodule lattices. Proc. University of Houston Lattice Theory Conference, 105–118, Houston, 1973.

  10. — andA. Huhn,Zum Wortproblem für freie Untermodulverbände. Archiv für Mathematik26 (1975), 449–453.

    Article  MATH  MathSciNet  Google Scholar 

  11. ——,Zum Begriff, der Charakteristik modularer Verbände. Math. Zeitschrift144 (1975), 185–194.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Higman, B. H. Neumann andH. Neumann,Embedding theorems for groups. J. London Math. Soc.24 (1949), 247–254.

    MathSciNet  Google Scholar 

  13. A. Huhn,Schwach distributive Verbände I. Acta Sci. Math.33 (1972), 297–305.

    MATH  MathSciNet  Google Scholar 

  14. G. Hutchinson,Modular lattices and abelian categories. J. of Algebra19 (1971), 156–184.

    Article  MATH  MathSciNet  Google Scholar 

  15. —,The representation of lattices by modules. Bull. Amer. Math. Soc.79 (1973), 172–176.

    Article  MATH  MathSciNet  Google Scholar 

  16. —,Recursively unsolvable word problems of modular lattices and diagram-chasing. J. of Algebra26 (1973), 385–399.

    Article  MATH  MathSciNet  Google Scholar 

  17. G. Hutchinson, On classes of lattices representable by modules. Proc. University of Houston Lattice Theory Conference, 69–94, Houston, 1973.

  18. S. MacLane,An algebra of additive relations. Proc. Nat. Acad. Sci. USA47 (1961), 1043–1051.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Makkai andG. McNulty, Universal Horn axiom systems for lattices of submodules. Manuscript, 1973.

  20. Ju. V. Matiyasevi c,Simple examples of unsolvable canonical calculi (Russian). Trudy. Mat. Inst. Steklov.93 (1973), 56–88, MR36#4996.

    Google Scholar 

  21. D. Puppe,Korrespondenzen in Abelschen Kategorien. Math. Ann.148 (1962), 1–30.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Rotman, “The Theory of Groups, An Introduction”. Second ed., Allyn and Bacon, Boston, 1973.

    MATH  Google Scholar 

  23. D. Sachs,Identities in finite partition lattices. Proc. Amer. Math. Soc.12 (1961), 944–945.

    Article  MATH  MathSciNet  Google Scholar 

  24. B. M. Schein Relation algebras and function semigroups. Semigroup Forum1 (1970), 1–62.

    MathSciNet  MATH  Google Scholar 

  25. J. Shoenfield, “Mathematical Logic”. Addison-Wesley Pub. Co., Reading, Mass., 1967.

    MATH  Google Scholar 

  26. A. Shafaat,On implicationally defined classes of algebras. J. London Math. Soc.44 (1969), 137–140.

    MATH  MathSciNet  Google Scholar 

  27. J. von Neumann, “Continuous Geometry”. Princeton University Press, Princeton, N.J., 1960.

    MATH  Google Scholar 

  28. P. M. Whitman,Free lattices II. Annals of Math.43 (1942), 104–115.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchinson, G. Embedding and unsolvability theorems for modular lattices. Algebra Universalis 7, 47–84 (1977). https://doi.org/10.1007/BF02485417

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02485417

Keywords

Navigation