Skip to main content
Log in

Measurement of the fracture energy using three-point bend tests: Part 1—Influence of experimental procedures

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Available measures of the fracture energy GF obtained with the procedure proposed by RILEM TC-50 provide values that appear to change with sample size, calling into question the possibility of considering GF as a material parameter. In this paper some possible sources of experimental errors, when the RILEM proposal is applied, are ascertained, namely the apparent energy dissipation from hysteresis in the testing equipment and energy dissipation in the lateral supports. It is concluded that either some other sources of energy dissipation are operative or that GF cannot be considered a material property.

Resume

L'expérience montre que l'énergie de rupture spécifique GF est un paramètre de calcul pour le béton et les matériaux à base de ciment. Cependant, il apparaît que les valeurs des mesures de l'énergie de rupture GF obtenues selon la méthode préconisée par la Commission Technique 50 de la RILEM, dont on dispose, changent avec la taille de l'éprouvette, ce qui met en question la possibilité de considérer GF comme un paramètre du matériau. Dans cet article, on a mis au jour plusieurs sources de dissipation de l'énergie qui, toutes, si on n'en tient pas compte comme il convient, risquent d'influer sur la valeur de l'énergie spécifique GF.

Il existe une dissipation de l'énergie apparente dans le dispositif d'essai due à l'hystérésis dont l'influence dépend de la taille de l'éprouvette. Bien que dans le dispositif expérimental des auterus l'hystérésis soit très bas, on ne peuta priori négliger cet élément et on recommande des essais d'étalonnage. Si les supports latéraux sont fixés, la dissipation due au frottement peut introduire des erreurs importantes dans la mesure de l'énergie de rupture. Pour mesurer GF, il faudrait accepter seulement des essais avec des supports roulants et, même dans ce cas, il y a une dissipation de l'énergie non négligeable en rapport avec la taille de l'éprouvette.

Bien que les effets considérés ci-dessus introduisent des erreurs de GF, et contribuent à son effet d'échelle, on conclut que soid d'autres sources de dissipation de l'énergie interviennent, soit GF ne peut être considéré comme une propriété du matériau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wittmann, F. H. (ed.), ‘Fracture Toughness and Fracture Energy of Concrete’ (Elsevier, Amsterdam, 1986).

    Google Scholar 

  2. Mihashi, H., Takahashi, H. and Wittmann, F. H. (eds), ‘Fracture Toughness and Fracture Energy: Test Methods for Concrete and Rock’ (Balkema, Rotterdam, 1989).

    Google Scholar 

  3. Hillerborg, A., ‘The theoretical basis of a method to determine the fracture energyG F of concrete’,Mater. Struct. 18(106) (1985) 291–296.

    Article  Google Scholar 

  4. Elices, M. and Planas, J., ‘Material models’, in ‘Fracture Mechanics of Concrete Structures’ (Chapman and Hall, London, 1989) pp. 16–66.

    Google Scholar 

  5. Idem, Size effect and experimental validation of available fracture models’, in ‘Analysis of Concrete Structures by Fracture Mechanics’ (Chapman and Hall, London, 1990) pp. 99–127.

    Google Scholar 

  6. Hordijk, D. A., ‘Deformation-Controlled Uniaxial Tensile Tests on Concrete’, Delft University of Technology Report 25.5.89-15 VFA (1989).

  7. RILEM TC-50 FMC (Draft Recommendation), ‘Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams’,Mater. Struct. 18(106) (1985) 285–290.

    Google Scholar 

  8. Hillerborg, A., ‘Results of three comparative test series for determining the fracture energyG F of concrete’,ibid. 18(107) (1985) 407–413.

    Article  Google Scholar 

  9. Petersson, P. E., ‘Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials’, Report TVBM-1006 (Division of Building Materials University of Lund, Sweden, 1981).

    Google Scholar 

  10. Planas, J. and Elices, M., ‘Towards a measure ofG F: an analysis of experimental results’, in ‘Fracture Toughness and Fracture Energy of Concrete’, edited by F. H. Wittmann (Elsevier, Amsterdam, 1986) pp. 381–390.

    Google Scholar 

  11. Guinea, G. V., ‘Medida de la Energia de Fractura del Hormigón’, PhD thesis, E.T.S. Ingenieros de Caminos, Universidad Politécnica de Madrid (1990).

  12. Elices, M., Guinea, G. V. and Planas, J., ‘Measurement of the fracture energy using three-point bend tests: 3—Influence of cutting theP−δ tail’,Mater. Struct. (1992) in press.

  13. Swartz, S. E., Hu, K. K. Fartash, M. and Huang, C. M. J., ‘Stress intensity factor for plain concrete in bending prenotched versus precracked beams’,Exper. Mech. 22(11) (1982).

  14. Swartz, S. E. and Refai, T. M. E., ‘Influence of size effects in opening mode fracture parameters for precracked concrete beams in bending’, in ‘Fracture of Concrete and Rock’ (Springer, 1989) pp. 242–254.

  15. Planas, J. and Elices, M., ‘Conceptual and experimental problems in the determination of the fracture energy of concrete’, in ‘Fracture Toughness and Fracture Energy: Test Methods for Concrete and Rock’, edited by H. Mihashi, H. Takahashi and F. H. Wittmann (Balkema, Rotterdam, 1989) pp. 165–181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guinea, G.V., Planas, J. & Elices, M. Measurement of the fracture energy using three-point bend tests: Part 1—Influence of experimental procedures. Materials and Structures 25, 212–218 (1992). https://doi.org/10.1007/BF02473065

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02473065

Keywords

Navigation