Skip to main content
Log in

Effect of composition, environmental factors and cement-lime mortar coating on concrete carbonation

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The paper describes the physicochemical processes of concrete carbonation and presents a simple mathematical model for the evolution of carbonation in time, applicable under constant relative humidity higher than 50%. The model is based on fundamental principles of chemical reaction engineering, and uses as parameters the ambient concentration of CO2, the molar concentratrations of the carbonatable constituents, Ca(OH)2 and CSH, in the concrete volume, and the effective diffusivity of CO2 in carbonated concrete. The latter is given by an empirical function of the porosity of hardened cement paste and of relative humidity, derived from laboratory diffusion tests. The validity of the model for OPC or pozzolanic cement concretes and mortars is demonstrated by comparison of its predictions with accelerated carbonation test results obtained in an environment of controlled CO2 concentration, humidity and temperature. The mathematical model is extended to cover the case of carbonation of the coating-concrete system, for concrete coated with a cement-lime mortar finish, applied either almost immediately after the end of concrete curing or with a delay of a certain time. Parametric studies are performed to show how the evolution of carbonation depth with time is affected by cement and concrete composition (water/cement or aggregate/cement ratio, percentage OPC or aggregate replacement by a pozzolan), environmental factors (relative humidity, ambient concentration of CO2), the presence and the time of application of a lime-cement mortar coating and its composition (water/cement, aggregate/cement and lime/cement ratios of the mortar, percentage OPC or aggregate replacement by a pozzolan).

Resume

On décrit ici les processus physico-chimiques de carbonatation du béton et on présente un modèle mathématique simple d'évolution de la carbonatation en fonction du temps, applicable à une humidité relative constante de plus de 50%. Ce modèle s'appuie sur les principles fondamentaux du processus de la réaction chimique, et utilise comme paramètres la concentration ambiante en CO2, les concentrations molaires des constituants carbonés, CaOH2 et CSH, dans le volume de béton, de la diffusivité effective de CO2 dans le béton carbonaté, qui est obtenue par une fonction empirique de la porosité de la pâte de ciment durci et de l'humidité relative, dérivée des essais de diffusion en laboratoire.

On démontre la validité du modèle pour les mortiers et bétons de ciment pouzzolanique (OPC) en comparant ses prévisins avec les résultats d'essai obtenus dans une ambiance de concentration de CO2, d'humidité et de température contrôlées. On étend le modèle mathématique au cas de la carbonatation du système revêtement-béton, pour un béton recouvert d'une couche de finissage de mortier de chaux-ciment appliquée presque immédiatement après la fin de la prise du béton ou après un certain temps.

Les études des paramètres montrent comment l'évolution de la profondeur de carbonatation en fonction du temps est affectée par la composition du ciment et du béton (rapport eau/ciment ou granulats/ciment, pourcentage d'OPC ou remplacement du granular par une pouzzolane), les facteurs ambinants (humidité relative, concentration en CO2, la présence et la durée d'application d'un revêtement de mortier de chaux-ciment et sa composition (rapports eau/ciment, granulat/ciment et chaux/ciment du mortier, pourcentage d'OPC ou de remplacement du granulat par une pouzzolane).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Morinaga, S., ‘Prediction of service lives of reinforced concrete buildings based on rate of corrosion of reinforcing steel’, Special Report No. 23 (Institute of Technology, Shimizu Corporation, Tokyo, 1988).

    Google Scholar 

  2. Idem, Morinaga, S., ‘Prediction of service lives of reinforced concrete buildings based on rate of corrosion of reinforcing steel’, in Proceedings of 5th International Conference on Durability of Building Materials and Components, Brighton, UK, Novemeber 1990, pp. 5–16.

  3. Hamada, M., ‘Neutralization (carbonation) of concrete and corrosion of reinforcing steel’, in Proceedings of 5th International Symposium on Chemistry of Cement, Tokyo, 1969, Vol. 3, pp. 343–369.

  4. Schiessl, P., ‘Zur Frage der zulässigen Rissbreite und der erforderlichen Betondeckung im Stahlbetonbau unter besonderer Berücksichtigung der Karbonatisierung des Betons’,Deutsch. Auss. Stahlbeton 255 (1976).

  5. Tuutti, K., ‘Corrosion of steel in concrete’, CBI Forskning Research (Swedish Cement and Concrete Research Institute, Stockholm, 1982).

    Google Scholar 

  6. Ying-yu, L. and Qui-dong, W., ‘The mechanism of carbonation of mortar and the dependence of carbonation on pore structure’, in Proceedings of Katharine and Bryant Mather International Conference on Concrete Durability, Atlanta, ACI SP-100 (American Concrete Institute, 1987) pp. 1915–1943.

  7. Nagataki, S., Mansur, M. A. and Ogha, H., ‘Carbonation of mortar in relation to ferrocement construction’,ACI Mater. J. 85(1) (1988) 17–25.

    Google Scholar 

  8. Richardson, M. G., ‘Carbonation of Reinforced Concrete’, (Citis, Dublin, 1988).

    Google Scholar 

  9. Papadakis, V. G., Fardis, M. N. and Vayenas, C. G., ‘Hydration and carbonation of pozzolanic cements’,ACI Mater. J. 89 (2) (1992).

  10. Padadakis, V. G., Vayenas, C. G. and Fardis, M. N., ‘Physical and chemical characteristics affecting the durability of concrete’,ibid. (1991) 186–196.

    Google Scholar 

  11. Idem, ‘A reaction engineering approach to the problem of concrete carbonation’,AIChE J. 35 (10) (1989) 1639–1650.

    Article  Google Scholar 

  12. Idem, ‘Fundamental modeling and experimental investigation of concrete carbonation’,ACI Mater. J. 88 (4) (1991) 363–373.

    Google Scholar 

  13. Idem, ‘Experimental investigation and mathematical modeling of the concrete carbonation problem’,Chem. Engng Sci. 46 (5/6) (1991) 1333–1338.

    Article  Google Scholar 

  14. Bijen, J. M. J. M. (ed.), ‘Maintenance and repair of concrete structures’,Heron 34(2) (1989).

  15. Hankins, P. J., ‘The use of surface coatings to minimize carbonation in the Middle East’, in Proceedings of 1st International Conference on Deterioration and Repair of Reinforced Concrete in the Arabian Gufl, Bahrein, 1985, Vol. 1, pp. 273–285.

  16. Huntington, W. C. and Mickadeit, R. E., ‘Building Construction, Materials and Types of Construction’, 5th Edn (Wiley, New York, 1981).

    Google Scholar 

  17. Hornbostel, C., ‘Construction Materials. Types, Uses and Applications’, (Wiley, New York, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadakis, V.G., Fardis, M.N. & Vayenas, C.G. Effect of composition, environmental factors and cement-lime mortar coating on concrete carbonation. Materials and Structures 25, 293–304 (1992). https://doi.org/10.1007/BF02472670

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472670

Keywords

Navigation