Skip to main content
Log in

Model to simulate the gastric electrical control and response activity on the stomach wall and on the abdominal surface

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A new physical model to simulate the gastric electrical activity (ECA and ERA) as picked up at points on the stomach wall and on the abdominal surface is proposed. In this model the part of the stomach where the electrical activity originates and propagates is represented by a truncated cone of finite length; the electrical potential representing the electrical activity of the cell is generated by a distal movement of an annular band polarised by electric dipoles which are oriented perpendicularly to the surface of the cone. The model reproduces not only the spatial and temporal organisation of the gastric electrical activity (ECA and ERA) but also its morphological characteristics (waveform, amplitude, frequency, phase lag) as obtained by experimentsin vivo. This model also reproduces the morphological characteristics of the signal as picked up, by experimentsin vivo on the abdominal surface in man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Couturier, D., Roze, C., Paolaggi, J. andDebray, C. (1972) Electrical activity of the normal human stomach.Am. J. Dig. Dis.,17, 969–976.

    Article  Google Scholar 

  • Hinder, R. A. andKelly, K. A. (1977) Human gastric pacesetter potentials. Site of origin, spread and response to gastric transection and proximal gastric vagatomy.Am. J. Surg.,133, 29–33.

    Article  Google Scholar 

  • Kelly, K. A., Coke, C. F. andElvebach, L. E. (1969) Pattern of canine gastric activity.Am. J. Physiol.,217, 461–469.

    Google Scholar 

  • Kelly, K. A. (1981) Motility of the stomach and gastroduodenal junction. InPhysiology of the gastrointestinal tract.Johnson, L. R. L. (Ed.), Raven Press, New York, 393–410.

    Google Scholar 

  • Kelly, K. A., Roberts, J. M. andRoberts, R. (1983) Receptive relaxation and other motor properties of the proximal stomach.Ital. J. Gastroenterology,15, 148–151.

    Google Scholar 

  • Linkens, D. A. andDatardina, S. P. (1977) Frequency entrainment of coupled Hodgkin-Huxley type oscillators for modelling gastrointestinal electrical activity.IEEE Trans.,BME-24, 362–365.

    Google Scholar 

  • Linkens, D. A. (1980) Electronic modelling of slow waves and spike activity in intestinal tissues.IEEE Trans.,BME-27, 351–357.

    Google Scholar 

  • Milenov, K. (1968) On the rhythm of the electric and motor activities in intact stomachs and after transverse resection.Izv. Inst. Fisiol. (Sofia),11, 79–86.

    Google Scholar 

  • Mirizzi, N. andScafoglieri, U. (1983) Optimal direction of the electrogastrographic signal in man.Med. & Biol Eng. & Comput.,21, 385–389.

    Google Scholar 

  • Mirizzi, N., Stella, R. andScafoglieri, U. (1985) A model of extracellular waveshape of the gastric electrical activity.,23, 33–37.

    Google Scholar 

  • Monges, H. andSalducci, J. (1969) Etude electromyographique de la motricité gastrique chez l’homme normal.Arch. Fr. Mal. App. Digestif,58, 517–580.

    Google Scholar 

  • Morgan, K. G., Shmalz, P. F. andSzurzewski, J. H. (1979) Action of pentagastrin on nonadrenergic inhibitory intramural nerves of canine orad stomach.Gastroenterology,76, 1206.

    Google Scholar 

  • Morgan, K. G., Go, V. L. W. andSzurszewski, J. K. (1980) Motilin increases influence of excitatory myenteric plexus neurons on gastric smooth musclein vitro. InGastrointestinal motility.Christensen, J. (Ed.), Raven Press, New York, 365–370.

    Google Scholar 

  • Pasanova, M. P., Nagai, T. andProsser, C. L. (1968) Two-component slow waves in smooth muscle of cat stomach.Am. J. Physiol.,214, 695–702.

    Google Scholar 

  • Plant, R. E. andKim, M. (1976) Mathematical description of a bursting pacemaker neuron by modification of the Hodgkin-Huxley equations.Biophys. J.,16, 227–240.

    Article  Google Scholar 

  • Sarna, S. K., Daniel, E. E. andKingma, Y. J. (1972) Simulation of the electric activity of the stomach by an array of relaxation oscillators.Am. J. Dis.,17, 299–310.

    Article  Google Scholar 

  • Sarna, S. K., Bowes, K. L. andDaniel, E. E. (1976) Gastric pacemakers.Gastroenterology,70, 226–231.

    Google Scholar 

  • Smout, A. J. M., van der Schee, E. J. andGrashius, J. L. (1980) What is measured in electrogastrography?Am. J. Dig. Dis.,25, 179–187.

    Article  Google Scholar 

  • Weber, J. andKohatsu, S. (1970) Pacesetter localization and electrical conduction patterns in the canine stomach.Gastroenterology,59, 717–726.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirizzi, N., Stella, R. & Scafoglieri, U. Model to simulate the gastric electrical control and response activity on the stomach wall and on the abdominal surface. Med. Biol. Eng. Comput. 24, 157–163 (1986). https://doi.org/10.1007/BF02443929

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02443929

Keywords

Navigation