Skip to main content
Log in

Improved method for cardiac output determination in man using ultrasound Doppler technique

  • Physiological Measurement
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

An existing ultrasound Doppler method for measuring cardiac output has been improved and refined, partly by locating the sampling volume higher up in the aorta while still using the aortic ring size as the effective transverse flow area. The basis for using this technique is the approximately rectangular systolic velocity profile in the aortic orifice in physiologically and anatomically normal subjects, and the fact that this profile velocity is conserved as the maximum velocity in the ascending aorta for some 3 to 4 cm above the valves. This higher location of the sampling volume improves Doppler signal quality, and does not reduce the accuracy of the method, as can be confirmed in each experimental subject. Together with automatic computer-based online signal analysis, the technique employed enables us to make continuous long-term beat-to-beat measurements of cardiac output in subjects without aortic valve disease or grossly deforming disease of the aortic root.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Christie, J., Sheldal, L. M., Tristani, F. E., Sagar, K. B., Ptacin, M. J. andWann, S. (1987) Determination of stroke volume and cardiac output during exercise: comparison of two-dimensional and Doppler echocardiography, Fick oximetry, and thermodilution.Circ.,76, 539–547.

    Google Scholar 

  • Dobb, G. J. andDonovan, K. D. (1987) Non-invasive methods of measuring cardiac output.Intensive Care Med.,13, 304–309.

    Google Scholar 

  • Eriksen, M. andKjaernes, M. (1989) BVA—blood velocity analyzer. Research report 123, Department of Informatics, University of Oslo, ISBN 82-7368-028-2.

  • Farthing, S. andPeronneau, P. (1979) Flow in the thoracic aorta.Cardiovasc. Res.,13, 607–620.

    Article  Google Scholar 

  • Fast, J. H., van den Merkhof, L., Blans, W., van Leeuwen, K. andUijen, G. (1988) Determination of cardiac output by single gated pulsed Doppler echocardiography.Int. J. Cardiol.,21, 33–42.

    Article  Google Scholar 

  • Guldvog, I., Kjaernes, M., Thoresen, M. andWalløe, L. (1980) Blood flow in arteries determined transcutaneously by an ultrasonic Doppler velocitymeter as compared to electromagnetic measurements on the exposed vessels.Acta Physiol. Scand.,109, 221–266.

    Article  Google Scholar 

  • Ihlen, H., Amlie, J. P., Dale, J., Forfang, K., Nitter-Hauge, S., Otterstad, J. E., Simonsen, S. andMyhre, E. (1984) Determination of cardiac output by Doppler echocardiography.Br. Heart J.,51, 54–60.

    Google Scholar 

  • Ihlen, H., Endresen, K., Myreng, Y. andMyhre, E. (1987) Reproducibility of cardiac stroke volume estimated by Doppler echocardiography.Am. J. Cardiol.,59, 975–978.

    Article  Google Scholar 

  • Kristoffersen, K. (1984) Real time spectrum analysis in Doppler ultrasound blood velocity measurements. SINTEF report STF48 A84030. SINTEF, Trondheim, Norway.

    Google Scholar 

  • McLennan, F. M., Haites, N. E., Mackenzie, J. D., Daniel, M. K. andRawles, J. M. (1986) Reproducibility of linear cardiac output measurement by Doppler ultrasound alone.Br. Heart J.,55, 25–31.

    Google Scholar 

  • Nikuradse, J. (1929) Untersuchungen über die Strömungen des Wassers in konvergenten und divergenten Kanälen.Forschungsarbeiten auf dem Gebiete des Ingenieurwesens,289, 1–49.

    Google Scholar 

  • Paulsen, P. K. (1980) The hot-film anemometer—a method for blood velocity determination. IIIn vivo comparison with the electromagnetic blood flowmeter.Eur. Surg. Res.,12, 149–158.

    Google Scholar 

  • Robinson, T. F., Factor, S. M. andSonneblick, E. H. (1986) The heart as a suction pump.Sci. Am.,254, 62–67.

    Article  Google Scholar 

  • Rouse, H. (1961)Fluid mechanics for hydraulic engineers. Dover Publ. Inc., New York, 262–263.

    Google Scholar 

  • Segadel, L. andMatre, K. (1987) Blood velocity distribution in the human ascending aorta.Circ.,76, 90–100.

    Google Scholar 

  • Stein, P. D. andSabbah, H. N. (1985) Blood velocity, velocity profiles, disturbances of flow and phasic dimensional changes of valve annuli and great vessels. InCardiovascular ultrasonic flowmetry.Altobelli, S. A., Voyles, W. F. andGreen, E. R. (Eds.), Elsevier Science Publ. Co., New York, 63.

    Google Scholar 

  • Vieli, A., Jenni, R. andAnliker, M. (1986) Spatial velocity distributions in the ascending aorta of healthy humans and cardiac patients.IEEE Trans.,BME-33, 28–34.

    Google Scholar 

  • Wesche, J. andWalløe, L. (1988) Time course and magnitude of blood flow changes in the human quadriceps muscles during and following rhythmic exercise.J. Physiol.,405, 257–273.

    Google Scholar 

  • Wille, S. Ø. andWalløe, L. (1981) Pulsatile pressure and flow in arterial stenoses simulated in a mathematical model.J. Biomed. Eng.,3, 17–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksen, M., Walløe, L. Improved method for cardiac output determination in man using ultrasound Doppler technique. Med. Biol. Eng. Comput. 28, 555–560 (1990). https://doi.org/10.1007/BF02442607

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02442607

Keywords

Navigation