Skip to main content
Log in

Changes in the content of the fibrillar collagens and the expression of their mRNAs in the menisci of the rabbit knee joint during development and ageing

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

The menisci are first seen as triangular aggregations of cells in the 20-day rabbit fetus. At 25-days, a matrix that contains types I, III and V collagens has formed. These collagens are also found in the 1-week neonatal meniscus, but by 3 weeks, type II collagen is present in some regions. By 12 to 14 weeks, typically cartilaginous areas with large cells in lacunae are found and by 2 years, these occupy the central regions of the inner two-thirds of the meniscus. The surface layers of the meniscus contain predominantly type I collagen. From 12 to 14 weeks onwards, there is little overlap between the regions with types I or II collagens, that is, these are discrete regions of type I-containing fibrocartilage and type II-containing cartilage. Types III and V collagens are found throughout the menisci, particularly in the pericellular regions.

All the cells in the fetal and early neonatal menisci express the mRNA for type I collagen. At 3 weeks postnatal, cells that express type I collagen mRNA are found throughout the meniscus, but type II collagen mRNA is expressed only in the regions of developing cartilage. At 12- to 14-weeks, only type II collagen mRNA is expressed, except at the periphery next to the ligament where a few cells still express type I collagen mRNA. Rabbit menisci, therefore, undergo profound changes in their content and arrangement of collagens during postnatal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen, H. (1961) Histochemical studies on the histogenesis of the knee joint and superior tibio-fibular joint in human foetuses.Acta Anat. 46, 279–303.

    CAS  PubMed  Google Scholar 

  • Arnoczky, S., Adams, M., Dehaven, K., Eyre, D. & Mow, V. (1988) Meniscus. InInjury and repair of musculoskeletal Soft Tissues (edited by S. Woo), pp. 487–537. American Academy of Orthopedic Surgeons.

  • Birk, D. E., Fitch, J. M., Babiarz, J. P., Doane, K. J. &Linsenmayer, T. F. (1990) Collagen fibrillogenesisin vitro: interaction of types I and V collagen regulates fibril diameter.J. Cell Sci. 95, 649–57.

    CAS  PubMed  Google Scholar 

  • Bland, Y. S., Critchlow, M. A. &Ashhurst, D. E. (1991) Digoxigenin as a probe label for in situ hybridization on skeletal tissues.Histochem. J.,23, 415–18.

    Article  CAS  PubMed  Google Scholar 

  • Cheung, H. S. (1987) Distribution of type I, II, III and V in the pepsin solubilized collagens in bovine meniscus.Connective Tiss. Res. 16, 343–56.

    CAS  Google Scholar 

  • Clark, C. R. &Ogden, J. A. (1983) The development of the menisci of the human knee joint.J. Bone Joint Surg. 85A, 538–47.

    Google Scholar 

  • Critchlow, M. A., Bland, Y. S., &Ashhurst, D. E. (1995) The expression of collagen mRNAs in normally developing neonatal rabbit long bones and after treatment of neonatal and adult rabbit tibia with transforming growth factor-β2.Histochem. J. 27, 505–15.

    CAS  PubMed  Google Scholar 

  • Eyre, D. R. &Wu, J. J. (1983) Collagen of fibrocartilage: a distinctive molecular phenotype in bovine meniscus.FEBS Letts.158, 265–70.

    Article  CAS  Google Scholar 

  • Fichard, A., Kleman, J.-P., &Ruggiero, F. (1994) Another look at collagen V and XI molecules.Matrix Biology 14, 515–31.

    Google Scholar 

  • Ganey, T. M., Ogden, J. A., Abou-Madi, N., Colville, B., Zdyziarski, J. M. &Olsen, J. H. (1994) Meniscal ossification. II The normal pattern in the tiger knee.Skeletal Radiol. 23, 173–9.

    Article  CAS  PubMed  Google Scholar 

  • Gardner, E. &O'Rahilly, R. (1980) The early development of the knee joint in staged human embryos.J. Anat. 102, 289–99

    Google Scholar 

  • Ghadially, F. N., Thomas, I., Yong, N. &Lalonde, J.-M.A. (1978) Ultrastructure of rabbit semi-lunar cartilages.J. Anat. 125, 499–517.

    CAS  PubMed  Google Scholar 

  • Klompmaker, J., Jansen, H. W. B., Veth, R. P. H., Nielsen, H. K. L., De Groot, J. H., Pennings, A. J. &Kuiter, R. (1992) Meniscal repair by fibrocartilage? An experimental study in the dog.J. Orthop. Res. 10, 359–70.

    Article  CAS  PubMed  Google Scholar 

  • Mäkelä, J. R., Raassina, M., Virta, A. &Vuorio, E. (1988) Human proa1(I) collagen: cDNA sequence for the C-propeptide domain.Nucleic Acids Res. 16, 349.

    PubMed  Google Scholar 

  • McDevitt, C. A. &Webber, R. J. (1990) The ultrastructure and biochemistry of meniscal cartilage.Clin. Orthop. Rel. Res. 252, 8–18.

    Google Scholar 

  • Mendler, M., Eich-Bender, S. G., Vaughn, L., Winterhalter, K. H. &Bruckner, P. (1989) Cartilage contains mixed fibrils of collagen types II, IX, and XI.J. Cell Biol. 108, 191–7.

    Article  CAS  PubMed  Google Scholar 

  • Metsäranta, M., Kujala, U. M., Pelliniemi, L., Österman, H., Aho, H. & Vuorio, E. (1996) Molecular biologic evidence for insufficient chondrocytic differentiation during repair of full-thickness defects of articular cartilage.Matrix Biology, in press.

  • Page, M., Hogg, J. &Ashhurst, D. E. (1986) The effects of mechanical stability on the macromolecules of the connective tissue matrices produced during fracture healing. I. The collagens.Histochem. J. 18, 251–65.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, H. E. (1949) The ossicles of the semilunar cartilages of rodents.Anat. Rec. 105, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Pedrini-Mille, A., Pedrini, V. A., Maynard, J. A., &Vailas, A. C. (1988) Response of immature chicken meniscus to strenuous exercise: biochemical studies of proteoglycan and collagen.J. Orthop. Res. 6, 196–204.

    Article  CAS  PubMed  Google Scholar 

  • Somer, L. &Somer, T. (1983) Is the meniscus of the knee joint a fibrocartilage?Acta Anat. 116, 234–44.

    CAS  PubMed  Google Scholar 

  • Spindler, K. P., Miller, R. R., Andrish, J. T. &McDevitt, C. A. (1994) Comparison of collagen synthesis in the peripheral and central region of the canine meniscus.Clin. Orthop. Rel. Res. 303, 256–63.

    Google Scholar 

  • Wallace, C. D., &Amiel, D. (1991) Vascular assessment of the periarticular ligaments of the rabbit knee.J. Orthop. Res. 9, 787–91.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J.-J., Eyre, D. R. &Slayter, H.-S. (1987) Type VI collagen of the intervertebral disc.Biochem. J. 248, 373–81.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bland, Y.S., Ashhurst, D.E. Changes in the content of the fibrillar collagens and the expression of their mRNAs in the menisci of the rabbit knee joint during development and ageing. Histochem J 28, 265–274 (1996). https://doi.org/10.1007/BF02409014

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02409014

Keywords

Navigation