Skip to main content
Log in

Adsorption of molecules of biological interest onto hydroxyapatite

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Equilibrium and kinetic experiments were conducted to investigate the factors determining the adsorption of salivary macromolecules onto hydroxyapatite. Using amino acids and other small adsorbates, it was determined that the carboxyl attached to the α carbon does not appear to adsorb onto HA and the affinities of side-chain carboxyls are much smaller than that of the phosphate group (phosphoserine). Hydroxyl (serine) displays an extremely high affinity, but its adsorption site on HA is different and the number of such sites is much smaller than found for the rest of the functional groups investigated. It is shown that the information obtained from small molecules cannot be readily applied to prediction of the adsorption behavior of salivary macromolecules and polypeptides. The kinetics of adsorption of the salivary phosphopeptide statherin, a polyaspartate, and the salivary prolinerich phosphoprotein PRP3 are consistent with the reversibility of the adsorption process; no conclusion was possible in the case of the protein PRP1. Apparent irreversibility cannot be explained on the basis of multipoint binding or the properties of the carboxyl versus phosphate group; it appears that secondary structure determines to a significant extent the adsorption properties of the macromolecules. Calculation of the thermodynamic molar quantities of adsorption of PRP1, PRP3, andl-ASP onto HA showed that the process is entropically driven. The functional relationship between partial molar entropy and adsorption coverage is similar for the two proteins, but quite different from that for aspartate. Explanations for these results are advanced on the bases of changes in structure configurations and displacement of water from the adsorbate and the adsorbent surface, the second factor being the dominant one in the adsorption of a small molecule such asl-ASP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernardi G, Kawasaki T (1968) Chromatography of polypeptides and proteins on hydroxyapatite columns. Biochim Biophys Acta 160:301–310

    CAS  PubMed  Google Scholar 

  2. Bernardi G, Giro M, Gaillard C (1972) Chromatography of polypeptides and proteins on hydroxyapatite column: some new developments. Biochim Biophys Acta 278:409–420

    CAS  PubMed  Google Scholar 

  3. Kawasaki T, Bernardi G (1970) Investigations on the resolving power of hydroxyapatite columns. Biopolymers 9:257–268

    Article  CAS  PubMed  Google Scholar 

  4. Kawasaki T (1981) Gradient hydroxyapatite chromatography with small sample loads. II. Experimental analysis and the resolving power of the columns Separ Sci Tech 16:439–473

    CAS  Google Scholar 

  5. Kawasaki T (1974) Theory of chromatography of rigid molecules on hydroxyapatite columns with small loads. 1. The case when virtually all molecules are adsorbed on to a single type of crystal site through a single type of adsorption group. J Chromatogr 93:313–335

    Article  CAS  PubMed  Google Scholar 

  6. Termine JD, Belcourt AB, Conn KM, Kleinman HD (1981) Mineral and collagen-binding proteins of fetal calf bone. J Biol Chem 256:10403–10408

    CAS  PubMed  Google Scholar 

  7. Hauschka PV, Reid ML (1978) Vitamin K dependence of a calcium-binding protein containingγ-carboxyglutamic acid in chicken bone. J Biol Chem 253:9063–9068

    CAS  PubMed  Google Scholar 

  8. Nakagawa YN, Margolis HC, Yokoyama S, Kezdy FJ, Kaiser ET, Coe FL (1981) Purification and characterization of a calcium oxalate monohydrate crystal growth inhibitor from human kidney tissue culture medium. J Biol Chem 256:3936–3944

    CAS  PubMed  Google Scholar 

  9. Hay DI, Moreno EC, Schlesinger DH (1979) Phosphoprotein-inhibitors of calcium phosphate precipitation from salivary secretions. Inorg Persp Biol Med 2:271–285

    CAS  Google Scholar 

  10. Hay DI, Moreno EC (1979) Macromolecular inhibitors of calcium phosphate precipitation in human saliva: their role in providing a protective environment for the teeth. In: Kleinberg I, Ellison SA, Mandel ID (eds) Proc Int Symp on Saliva and Dental Caries, Stony Brook, NY. Sp Suppl Microbiology Abstracts, p 45

  11. Moreno EC, Varughese K, Hay DI (1979) Effect of human salivary proteins on the precipitation kinetics of calcium phosphate. Calcif Tissue Int 28:7–16

    CAS  PubMed  Google Scholar 

  12. Schlesinger DH, Hay DI (1977) Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva. J Biol Chem 252:1689–1695

    CAS  PubMed  Google Scholar 

  13. Moreno EC, Kresak M, Hay DI (1978) Adsorption of two human parotid salivary macromolecules on hydroxy-, fluorhydroxy- and fluorapatities. Arch Oral Biol 23:525–533

    Article  CAS  PubMed  Google Scholar 

  14. Wong RSC, Bennick A (1980) The primary structure of a salivary calcium-binding proline-rich phosphoprotein (protein C), a possible precursor of a related salivary protein A. J Biol Chem 255:5943–5948

    CAS  PubMed  Google Scholar 

  15. Wong RSC, Hofmann T, Bennick A (1979) The complete primary structure of a proline-rich phosphoprotein from human saliva. J Biol Chem 254:4800–4807

    CAS  PubMed  Google Scholar 

  16. Schlesinger DH, Hay DI (1979) Complete primary structure of a proline-rich phosphoprotein (PRP-4), a potent inhibitor of calcium phosphate precipitation in human parotid saliva. In: Gross E, Meienhofer J (eds) Peptides: Structure and Biological Function, Proc 6th Am Peptide Symp, Georgetown, pp 133–136

  17. Moreno EC, Kresak M, Zahradnik RT (1977) Physicochemical aspects of fluoride-apatite systems relevant to the study of dental caries. Caries Res (Suppl 1) 11:142–171

    PubMed  Google Scholar 

  18. Moreno EC, Zahradnik RT, Glazman A, Hwu R (1977) Precipitation of hydroxyapatite from dilute solutions upon seeding. Calcif Tissue Res 24:47–57

    Article  CAS  PubMed  Google Scholar 

  19. Moreno EC, Kresak M, Zahradnik RT (1974) Fluoridated hydroxyapatite solubility and caries formation. Nature 247:64–65

    Article  CAS  PubMed  Google Scholar 

  20. Wiegele M, DeBernardo S, Tengi J, Leimgruber W (1972) Novel reagent for the fluorometric assay of primary amines. J Am Chem Soc 94:5927–5928

    Article  Google Scholar 

  21. Udenfriend S, Stein S, Bohlen P, Dairman W, Leingruber W, Weigele M (1972) Applications of fluorescamine, a new reagent for assay of amino acids, peptides, proteins and other primary amines in the picomole range. Science 178:871–872

    CAS  PubMed  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  23. Spackman DH, Stein WH, Moore S (1958) Automatic recording apparatus for use in the chromatography of amino acids. Anal Chem 30:1190–1206

    Article  CAS  Google Scholar 

  24. Kirkpatrick DS, Bishop SH (1971) Simplified wet ash procedure for total phosphorus analysis of organophosphonates in biological samples. Anal Chem 43:1707–1709

    Article  CAS  PubMed  Google Scholar 

  25. Kresak M, Moreno EC, Zahradnik RT, Hay DI (1977) Adsorption of amino acids onto hydroxyapatite. J Coll Int Sci 59:283–292

    Article  CAS  Google Scholar 

  26. Moreno EC, Kresak M, Hay DI (1982) Adsorption thermodynamics of acidic proline-rich human salivary proteins onto calcium apatites. J Biol Chem 257:2981–2989

    CAS  PubMed  Google Scholar 

  27. Dormant LM, Adamson AW (1980) Symmetrical adsorption thermodynamics: the noninert adsorbent. J Coll Int Sci 75:23–33

    Article  CAS  Google Scholar 

  28. Giles CH, Smith D, Huitson A (1974) A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J Coll Int Sci 47:755–765

    Article  CAS  Google Scholar 

  29. Giles CH, D'Silva AP Easton IA (1974) A general treatment and classification of the solute adsorption isotherm. II. Experimental interpretation. J Coll Int Sci 47:766–778

    Article  CAS  Google Scholar 

  30. Giles CH (1981) Adsorption at solid/liquid interfaces. In: Lucassen-Reynders EH (ed) Anionic Surfactants. Marcel Dekker, New York, p 143

    Google Scholar 

  31. Rekker RF (1977) In: Nauta WT, Rekker RF (eds) The hydrophobic fragmental constant. Elsevier, New York, pp 98, 300, 301

    Google Scholar 

  32. Meckel AH (1968) The nature and importance of organic deposits on dental enamel. Caries Res 2:104–114

    Article  CAS  PubMed  Google Scholar 

  33. Zahradnik RT, Moreno EC, Burke EJ (1976) Effect of salivary pellicle on enamel subsurface demineralizationin vitro. J Dent Res 55:664–670

    CAS  PubMed  Google Scholar 

  34. Mayhall CW (1970) Concerning the composition and source of the acquired enamel pellicle of human teeth. Arch Oral Biol 15:1327–1341

    Article  CAS  PubMed  Google Scholar 

  35. Lindau G, Rhodius R (1935) The physical chemical analyses of adsorbed molecules of egg white in the solid-liquid boundary. Z Phys Chem A 172:321–347

    Google Scholar 

  36. Pearce EIF, Bibby BG (1966) Protein adsorption on bovine enamel. Arch Oral Biol 11:329–336

    Article  CAS  PubMed  Google Scholar 

  37. Brash JL, Lyman DJ (1969) Adsorption of plasma proteins in solution to uncharged hydrophobic polymer surfaces. J Biomed Mater Res 3:175–189

    Article  CAS  PubMed  Google Scholar 

  38. Kamyshnyi AL (1981) Adsorption of globular proteins on solid corners: certain physicochemical characteristics. Russ J Phys Chem 55:319–330

    Google Scholar 

  39. Brash JL, Lyman DJ (1977) In: Hair ML (ed) The chemistry of biosurfaces. Marcel Dekker, New York, p 177

    Google Scholar 

  40. McRitchie F (1972) Adsorption of proteins at the solid/liquid interface. J Coll Int Sci 38:484–488

    Article  Google Scholar 

  41. Margolis HC, Varughese K, Moreno EC (1982) Effect of fluoride on crystal growth calcium apatites in the presence of a salivary inhibitor. Calcif Tissue Int 34:S33-S40

    PubMed  Google Scholar 

  42. Juriaanse AC, Arends J, Ten Bosch JJ (1980) The adsorption of acidic and basic homopolypeptides to whole bovine dental enamel. J Coll Int Sci 76:212–219

    Article  CAS  Google Scholar 

  43. Olander DS, Holtzer AJ (1968) The stability of the polyglutamic acidα helix. J Am Chem Soc 90:4549–4560

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, E.C., Kresak, M. & Hay, D.I. Adsorption of molecules of biological interest onto hydroxyapatite. Calcif Tissue Int 36, 48–59 (1984). https://doi.org/10.1007/BF02405293

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02405293

Key words

Navigation