Skip to main content
Log in

Direct methanol fuel cells : Methanol crossover and its influence on single DMFC performance

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present investigation, the methanol crossover rate through Nafion®-115 membrane at different temperatures and different concentrations had been investigated in a fuel cell test apparatus by using gas chromatography analysis. The singledirect methanol fuel cell (DMFC) tests were carried out to investigate the effect of the concentration of methanol aqueous solutions and cell temperature on methanol crossover and consequently, on the open circuit voltage and the cell performance of DMFC. It can be found that the methanol crossover rate through Nafion® membrane increases as methanol concentration and temperature increase. It can also be found that methanol crossover presented a negative effect on the open circuit voltage and the single DMFC performance. Single DMFC test results showed that an improved cell performance was obtained as temperature increased although the methanol crossover rate increased with temperature increment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Dillon, S. Srinisasan, A.S. Aricò, A. Antonucci, J. Power Sources127, 112 (2003).

    Google Scholar 

  2. X. Ren, P. Zelenay, S. Thomas, J. Davey, S. Gottesfeld, J. Power Sources86, 111 (2000).

    CAS  Google Scholar 

  3. C. Lim, C. Y. wang, J. Power Sources113, 145 (2003).

    CAS  Google Scholar 

  4. M. Watanabe, M. Motoo, J. Electroanal. Chem.60, 267 (1975).

    CAS  Google Scholar 

  5. D. Chu, S. Gilman, J. Electrochem. Soc.143, 1685 (1996).

    CAS  Google Scholar 

  6. J. Larminie, A. Dicks, Fuel Cell Systems Explained, Second edition, Wiley, 2001, P149.

  7. L.S. Gojkovi, S. Gupta, R.F. Savinell, J Electroanal. Chem.462, 63 (1995).

    Google Scholar 

  8. L. Xiong, A. Manthiram, Electrochim. Acta, (2004), in press.

  9. K. Scott, W.M. Taama, P. Argyroloulos, A. Hamnet, J. Power Sources83, 204 (1999).

    CAS  Google Scholar 

  10. H. Dohle, H. Schmitz, T. Bewer. K. Merge, D. Stolten, J. Power Sources106, 313 (2002).

    CAS  Google Scholar 

  11. R. Nolte, K. Ledjeff, M. Bauer, R. Mülhaupt, J Membr. Sci.83, 211 (1993).

    Article  CAS  Google Scholar 

  12. J. Kerres, W. Cui, R. Disson, W. Neubrand, J Membr. Sci.139, 211 (1998).

    CAS  Google Scholar 

  13. H. Uchida, Y. Mizuno, M. Watanabe, J Electrochem. Soc.149, A682 (2002).

    Google Scholar 

  14. Y.M. Kim, K.W. Park, J.H. Choi, I.S. Park, Y.E. Sung, Electrochem. Comm.5, 571 (2003).

    CAS  Google Scholar 

  15. E.N. Miyake, J.S. Wainright, R.F. Savinell, J Electrochem. Soc.148, A905 (2001).

  16. W.C. Choi, J.D. Kim, S.I. Woo, J. Power Sources96, 411 (2001).

    CAS  Google Scholar 

  17. S.Q. Song, W.J. Zhou, Z.X. Liang, R. Cai, G. Sun, Q. Xin, V. Stergiopoulos and P. Tsiakaras, Appl. Catal. B55, 65 (2004).

    Google Scholar 

  18. V. Gogel, T. Frey, Y. Zhu, K. A. Friedrich, L. Jörissen, J. Garche, J. Power Sources127, 172 (2004).

    CAS  Google Scholar 

  19. J. Cruickshank, K. Scott, J. Power Sources70, 40 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Q. Xin or P. Tsiakaras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, S.Q., Zhou, W.J., Li, W.Z. et al. Direct methanol fuel cells : Methanol crossover and its influence on single DMFC performance. Ionics 10, 458–462 (2004). https://doi.org/10.1007/BF02378008

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02378008

Keywords

Navigation