Skip to main content
Log in

Winter limnology: a comparison of physical, chemical and biological characteristics in two temperate lakes during ice cover

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The winter dynamics of several chemical, physical, and biological variables of a shallow, polymictic lake (Opinicon) are compared to those of a deep, nearby dimictic lake (Upper Rock) during ice cover (January to early April) in 1990 and 1991. Both lakes were weakly inversely thermally stratified. Dissolved oxygen concentration was at saturation (11–15 mg l−1) in the top 3 m layer, but declined to near anoxic levels near the sediments. Dissolved oxygen concentrations in the deep lake were at saturation in most of the water column and approached anoxic levels near the sediments only. Nutrient concentrations in both lakes were fairly high, and similar in both lakes during ice cover. Total phosphorus concentrations generally ranged between 10–20 µg l−1, NH4-N between 16–100 µg l−1, and DSi between 0.9–1.9 mg l−1; these concentrations fell within summer ranges. NO3-N concentrations were between 51–135 µg l−1 during ice cover, but occurred at trace concentrations (<0.002 µg l−1) during the summer. The winter phytoplankton community of both lakes was dominated by flagellates (cryptophytes, chrysophytes) and occasionally diatoms. Dinoflagellates, Cyanobacteria and green algae were poorly represented. Cryptophytes often occurred in fairly high proportions (20–80%) throughout the water column, whereas chrysophytes were more abundant just beneath the ice. Zooplankton population densities were extremely low during ice cover (compared to maximum densities measured in spring or summer) in both lakes, and were comprised largely of copepods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agbeti, M. D., 1993. Comparison of seasonal succession of phytoplankton in two lakes with different mixig regimes. PhD thesis. Queen's University, Kingston, Canada 195 pp.

    Google Scholar 

  • Berninger, U-G, Caron, A. & R. W. Sanders, 1992. Mixotrophic algae in three ice-covered lakes of the Pocono Mountains, U.S.A. Freshwat. Biol. 28: 263–272.

    Article  Google Scholar 

  • Bird, D. F. & J. Kalff, 1986. Bacterial grazing by planktonic algae. Science 231: 494–495.

    Article  Google Scholar 

  • Bird, D. F. & J. Kalff, 1987. Algal phagotrophy: regulating factors and importance relative to photosynthesis ofDinobryon (Chrysophyceae). Limnol. Oceanogr. 32: 277–284.

    CAS  Google Scholar 

  • Bolsenga, S. J. & H. A. Vanderploeg, 1992. Estimating photosynthetically available radiation into open and ice-covered freshwater lakes from surface characteristics; a high transmittance case study. Hydrobiologia 243/244 (Dev. Hydrobiol. 79): 95–104.

    Article  Google Scholar 

  • Cronberg, G., C. Gelin & K. Larsson, 1975. Lake Trummen restoration project. II. Bacteria, and phytoplankton productivity. Verh. Int. Ver. Limnol. 19: 1088–1096.

    Google Scholar 

  • Dale, H. M. & T. Gillespie, 1977. Diurnal fluctuations of temperature near the bottom of shallow water bodies as affected by solar radiation, bottom colour and water circulation. Hydrobiologia 55: 87–9.

    Google Scholar 

  • Freeberg, M. H, 1985. Early life history factors influencing lake whitefish (Coregonus chapeaformis) year-class strength in Grand Transverse Bay, Lake Michigan. M. S. thesis, Mich. St. Univ. 89 pp.

  • Gannon, J. E. 1971. Two counting cells for the enumeration of zooplankton microcrustacea. Trans. Am. Microsc. Soc. 90: 486–490.

    Article  Google Scholar 

  • Greenbank, J. T., 1945. Limnological conditions in ice-covered lakes, especially as related to winter-kill of fish. Ecol. Monogr. 15: 345–392.

    Article  Google Scholar 

  • Gulati, R. D., K. Siewertsen & G. Postema, 1982. The zooplankton: its community structure, food and feeding and role in the ecosystem of Lake Vechten. Hydrobiologia 95 (Dev. Hydrobiol. 11): 127–163.

    Article  Google Scholar 

  • Hamilton, P., 1990. The revised edition of a compterised counter for plankton, periphyton and sediment diatom analyses. Hydrobiologia 194: 23–30.

    Article  Google Scholar 

  • Hobbie, J. E., 1973. Arctic limnology: a review. In Britton, M. E. (ed.), Alaskan Arctic Tundra. Arctic Institute of North America Technical Paper 25: 127–168.

    Google Scholar 

  • Ilmavirta, V., 1983. The role of flagellated phytoplankton in chains of small brown water lakes in southern Finland. Ann. Bot. fenn. 20: 187–195.

    CAS  Google Scholar 

  • Kalff, J., H.J., Kling, S. H. Holmgren, & H. E. Welch, 1975. Phytoplankton, growth and biomass cycles in an unpolluted and in a polluted polar lake. Verh. Int. Ver. Limnol. 19: 487–495.

    Google Scholar 

  • Klaveness, D., 1988. Ecology of the Cryptomonadida: a first review. In Sandgren, C. D. (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press: 105–133.

  • Kudoh, S. & M. Takahashi, 1989. Physico-chemical control of the growth of a diatom,Asterionella formosa Hass., in a shallow eutrophic lake. J. Plankton Res. 11: 1001–1019.

    Google Scholar 

  • Løvstad, Ø. & K. Bjørndalen, 1990. Nutrients (P, N, Si) and growth conditions for diatoms andOscillatoria spp. in lakes in south-eastern Norway. Hydrobiol 196: 255–263.

    Article  Google Scholar 

  • Lund, J. W. G., 1949. Studies onAsterionella. I. The origin and nature of cells producing seasonal maxima. J. Ecol. 37: 389–419.

    Article  Google Scholar 

  • Morgan, L. & J. Kalff, 1975. The winter dark survival of an algal flagellate —Cryptomonas erosa (Skuja). Verh. Int. Ver. Limnol. 19: 2734–40.

    Google Scholar 

  • Nebaeus, M., 1984. Algal blooms under ice cover. Verh. int. Ver. Limnol. 22: 719–724.

    CAS  Google Scholar 

  • Odum, E. P., 1959. Fundamentals of Ecology, W. B. Saunders, Philadelphia, 546 p.

    Google Scholar 

  • Pennak, R. W., 1968. Field and experimental winter limnology of three Colorado mountain lakes. Ecol. 49: 505–520.

    Article  Google Scholar 

  • Pollingher, U., 1988. Freshwater armoured dinoflagellates: Growth, reproduction strategies and population dynamics. In Sandgren, C. D. (ed.), Growth and reproductive strategies of freshwater phytoplankton, Cambridge University Press: 134–174.

  • Porter, K. G., 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244: 179–180.

    Article  Google Scholar 

  • Reynolds, C. S., 1973. The seasonal periodicity of planktonic diatoms in a shallow eutrophic lake. Freshwat. Biol. 3: 89–110.

    Article  Google Scholar 

  • Reynolds, C. S., 1976. Succession and vertical distribution of phytoplankton in response to thermal stratification in a lowland mere, with special reference to nutrient availability. J. Ecol. 64:529–551.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., 1980. Phytoplankton assemblages and their periodicity in stratifying lakes. Holarct. Ecol. 3: 141–159.

    Google Scholar 

  • Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, 384 pp.

  • Salonen, K., Jones & L. Arvola, 1984. Hypolimnetic phosphorus retrieval by diel vertical migrations of lake phytoplankton. Freshwat. Biol. 14: 431–438.

    Article  CAS  Google Scholar 

  • Sandgren, C. D., 1988. The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press: 9–104.

  • Schindler, D. W., 1969. Two useful devices for vertical plankton and water sampling. J. Fish. Res. Bd Can. 6: 1948–1955.

    Google Scholar 

  • Siver, P.A. & J. S. Chock, 1986. Phytoplankton dynamics in a chrysophycean lake. In Kristiansen, J. & R. A. Andersen (eds), Chrysophytes: Aspects and problems. Cambridge University Press, Cambridge: 165–183.

    Google Scholar 

  • Siver, P. A. & J. S. Hamer, 1992. Seasonal periodicity of Chrysphyceae and Synurophyceae in a small New England Lake: Implications for paleolimniological research. J. Phycol. 28: 186–198.

    Article  Google Scholar 

  • Smetacek, V. A., 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Mar. Biol. 84: 239–251.

    Article  Google Scholar 

  • Sommer, U., 1981. The role of r- and K-selection in the succession of phytoplankton in Lake Constance. Oecol. Gener. 2: 327–342.

    Google Scholar 

  • Sommer, U., 1985. Seasonal succession of phytoplankton in Lake Constance. Bioscience 35: 351–357.

    Article  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, M. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in freshwaters. Arch. Hydrobiologia 106: 432–471.

    Google Scholar 

  • Spaulding, S. A., J. V. Ward & J. Baron. 1993. Winter phytoplankton in a subalpine lake. Colorado, U.S.A. Arch. Hydrobiologia 129: 179–198.

    Google Scholar 

  • Sweerts, J. R. A., M.-J. Bär-Gilissen, A. A. Cornelese & T. E. Cappenberg, 1991. Oxygen-consuming processes at the profundal and littoral sediment-water interface of a small mesoeutrophic lake (Lake Vechten, the Netherlands). Limnol. Oceanogr. 36: 114–1133.

    Google Scholar 

  • Talling, J. F., 1962. Freshwater algae. In Lewin, R. A. (ed.), Physiology and biochemistry of algae. Academic Press, New York: 743–757.

    Google Scholar 

  • Taylor, W. D. & R. G. Wetzel, 1984. Populations ofRhodomonas minuta v.nannoplanktonica SKUJA (Cryptophyceae) in a hardwater lake. Verh. Int. Ver. Limnol.: 536–541.

  • Taylor, W. M., M. S. Smale & M. H. Freeberg, 1987. Biotic and abiotic determinants of lake whitefish (Coregonus chapeaformis) recruitment in northeastern Michigan. Can. J. Fish. Aquat. Sci. 44 (Suppl 2): 313–323.

    Article  Google Scholar 

  • Thomas, R. H. & A. E. Walsby, 1985. Buoyancy regulation in a strain ofMicrocystis. J. gen. Microbiol. 131: 799–809.

    Google Scholar 

  • Tomaszek, J., 1991. Oxygen consumption by bottom sediments. Verh. Int. Ver. Limnol. 24: 3045–3049.

    Google Scholar 

  • Vanderploeg, H. A., S. J, Bolsenga, G. L. Fahnenstiel, G. L. Liebig & W. S. Gardner, 1992. Plankton ecology in an ice-covered bay of Lake Michigan: utilization of a winter phytoplankton bloom by reproducing copepods. Hydrobiologia 243/244 (Dev. Hydrobiol. 79): 175–183.

    Article  Google Scholar 

  • Vollenwieder, R. A., 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors of eutrophication. Paris. Report to the Organisation for Economic Cooperation and Development. No. DAS/CSV68 .27.

  • Wetzel, R. G., 1983. Limnology. Saunders, New York, 753 pp.

    Google Scholar 

  • Wharton, R. A. Jr., G. M. Simmons & C. P. McKay, 1989. Perennially ice-covered Lake Hoare, Antarctica: physical environment, biology and sedimentation. Hydrobiologia 172 (Dev. Hydrobiol. 49): 305–320.

    Article  PubMed  CAS  Google Scholar 

  • Willén, T., 1961. The phytoplankton of Ösbysjön, Djursholm. I. Seasonal and vertical distribution of the species. Oikos 12: 36–69.

    Article  Google Scholar 

  • Wright, R. T., 1964. Dynamics of a phytoplankton community in an ice-covered lake. Limnol. Oceanogr. 9: 163–178.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agbeti, M.D., Smol, J.P. Winter limnology: a comparison of physical, chemical and biological characteristics in two temperate lakes during ice cover. Hydrobiologia 304, 221–234 (1995). https://doi.org/10.1007/BF02329316

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02329316

Key words

Navigation