Skip to main content
Log in

Thermalization of muonic hydrogen in hydrogen targets

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The thermalization of pµ atoms in protium and dµ atoms in deuterium is considered. Monte Carlo calculations are performed for gaseous (300 K) and solid (3 K) protium and deuterium targets. Complete sets of the total and differential cross sections for the scattering of pµ on protium targets and dµ on deuterium targets are used as an input to the Monte Carlo simulations. At 300 K, muonic atom scattering from single molecules of H2 and D2 is considered. In the case of solid hydrogen the correlation effects from all molecules of the sample are taken into account. In particular, the Bragg and phonon scattering cross sections are calculated. The spin states and average energy of the muonic atoms are shown as functions of time. It is shown that at energies below about 0.01 eV the solid-state effects influence strongly the calculated cross sections, and therefore the deceleration processes in the solids are much slower than in the gaseous targets. It is shown that the neutron spectrum due to ddµ formation and subsequent dd fusion is significantly affected by slow dµ thermalization in solid deuterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.H. Breunlich et al., Ann. Rev. Nucl. Part. Sci. 39 (1989) 311.

    Google Scholar 

  2. L.I. Ponomarev, Contemp. Phys. 31 (1991) 219.

    Google Scholar 

  3. A. Bertin et al., Riv. Nuovo Cimento 5 (1975) 423.

    Google Scholar 

  4. J.B. Kraiman et al., Phys. Rev. Lett. 63 (1989) 1942.

    Google Scholar 

  5. V.E. Markushin et al., Hyp. Int. 82 (1993) 373.

    Google Scholar 

  6. M. Jeitler et al., Hyp. Int. 82 (1993) 391.

    Google Scholar 

  7. G.M. Marshall et al., Hyp. Int. 82 (1993) 529.

    Google Scholar 

  8. H. Schneuwly, Phys. Lett. A 191 (1994) 416.

    Google Scholar 

  9. L. Schellenberg et al., these proceedings (Hyp. Int. 101 /102 (1996) 215).

    Google Scholar 

  10. G. Bardin et al., Nucl. Phys. A 352 (1981) 365.

    Google Scholar 

  11. A. Adamczak et al., report WMM 94-1 (College of William and Mary, Williamsburg, 1984), to be published in: At. Data Nucl. Data Tables.

    Google Scholar 

  12. A. Adamczak, Hyp. Int. 82 (1993) 91.

    Google Scholar 

  13. A.V. Kravtsov, A.I. Mikhailov and N.P. Popov, J. Phys. B 19 (1986) 1323.

    Google Scholar 

  14. A. Adamczak, V.S. Melezhik and L.I. Menshikov, Z. Phys. D4 (1986) 153.

    Google Scholar 

  15. A. Adamczak, Muon Cat. Fusion 4 (1989) 31.

    Google Scholar 

  16. L. Bracci et al., Muon Cat. Fusion 4 (1989) 247.

    Google Scholar 

  17. S.I. Vinitsky and L.I. Ponomarev, Phys. Elementary Part. At. Nucl. 13 (1982) 1336 [Sov. J. Part. Nucl. 13 (1982) 557].

    Google Scholar 

  18. L.I. Ponomarev and M.P. Faifman, Zh. Eksp. Teor. Fiz. 71 (1976) 1689 [Sov. Phys. JETP 44 (1976) 886].

    Google Scholar 

  19. M.P. Faifman and L.I. Ponomarev, Phys. Lett. B 265 (1991) 201.

    Google Scholar 

  20. M.P. Faifman, Private communication.

  21. V.E. Markushin, Phys. Rev. A 50 (1994) 1137.

    Google Scholar 

  22. D.J. Abbott and R.T. Siegel, Private communication.

  23. S.S. Gerstein, Zh. Eksp. Teor. Fiz. 34 (1958) 463 [Sov. Phys. JETP 7 (1958) 318].

    Google Scholar 

  24. G.M. Marshall et al., these proceedings (Hyp. Int. 101 /102 (1996) 47).

    Google Scholar 

  25. P.E. Knowles et al., these proceedings (Hyp. Int. 101/102 (1996) 21).

    Google Scholar 

  26. D.L. Demin et al., these proceedings (Hyp. Int. 101 /102 (1996) 13, 583, 591).

    Google Scholar 

  27. P. Strasser et al., these proceedings (Hyp. Int. 101 /102 (1996) 539).

    Google Scholar 

  28. I.F. Silvera, Rev. Mod. Phys. 52 (1980) 393, and references therein.

    Google Scholar 

  29. J. Van Kranendonk,Solid Hydrogen. Theory of the Properties of Solid H 2,HD, and D 2 (Plenum Press, New York and London, 1983).

    Google Scholar 

  30. P.C. Souers,Hydrogen Properties for Fusion Energy (University of California Press, Berkeley, 1986).

    Google Scholar 

  31. S.W. Lovesey,Theory of Neutron Scattering from Condensed Matter (Clarendon, Oxford, 1984).

    Google Scholar 

  32. M. Nielsen and H.B. MØller, Phys. Rev. B3 (1971) 4383.

    Google Scholar 

  33. M. Nielsen, Phys. Rev. B7 (1973) 1626.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamczak, A. Thermalization of muonic hydrogen in hydrogen targets. Hyperfine Interact 101, 113–124 (1996). https://doi.org/10.1007/BF02227612

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02227612

Keywords

Navigation