Skip to main content
Log in

A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we establish the complete multifractal formalism for equilibrium measures for Hölder continuous conformal expanding maps andexpanding Markov Moran-like geometric constructions. Examples include Markov maps of an interval, beta transformations of an interval, rational maps with hyperbolic Julia sets, and conformal toral endomorphisms. We also construct a Hölder continuous homeomorphism of a compact metric space with an ergodic invariant measure of positive entropy for which the dimension spectrum is not convex, and hence the multifractal formalism fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bowen,Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  2. R. Cawley and R. D. Mauldin, Multifractal decompositions of Moran fractals,Adv. Math. 92:196–236 (1992).

    Google Scholar 

  3. C. D. Cutler, Connecting, ergodicity and dimension in dynamical systems,Ergod. Theory Dynam. Syst. 10:451–462 (1990).

    Google Scholar 

  4. L. Carleson and T. Gamelin,Complex Dynamics (Springer-Verlag, Berlin, 1993).

    Google Scholar 

  5. P. Collet, J. L. Lebowitz, and A. Porzio, The dimension spectrum of some dynamical systems,J. Stat. Phys. 47:609–644 (1987).

    Google Scholar 

  6. R. Ellis, Large deviations for a general class of random vectors,Ann. Prob. 12:1–12 (1984).

    Google Scholar 

  7. G. Edgar and R. Mauldin, Multifractal decomposition of digraph recursive fractals,Proc. Lond. Math. Soc. 65:604–628 (1992).

    Google Scholar 

  8. K. Falconer,Fractal Geometry Mathematical Foundations and Applications (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  9. H. Federer,Geometric Measure Theory (Springer-Verlag, Berlin, 1969).

    Google Scholar 

  10. H. G. E. Hentschel and I. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors,Physica 8D:435–444 (1983).

    Google Scholar 

  11. T. C. Halsey, M. Jensen, L. Kadanoff, I. Procaccia, and B. Shraiman, Fractal measures and their singularities: The characterization of strange sets,Phys. Rev. A 33:1141–1151 (1986).

    Google Scholar 

  12. A. Katok, Bernoulli diffeomorphisms on surfaces,Ann. Math. 110 (1979).

  13. A. Katok and B. Hasselblatt,Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  14. F. Ledrappier, InProceedings of the Conference on Ergodic Theory and Related Topics, Vol. 11 (Teubner, 1986), pp. 116–124.

  15. A. Lopes, The dimension spectrum of the maximal measure,SIAM J. Math. Anal. 20:1243–1254 (1989).

    Google Scholar 

  16. F. Ledrappier and M. Misiurewicz, Dimension of invariant measures for maps with exponent zero,Ergod. Theory and Dynam. Syst. 5:595–610 (1985).

    Google Scholar 

  17. Ka-Sing Lau and Sze-Man Ngai, Multifractal measures and a weak separation condition,Adv. Math., to appear.

  18. R. Mané,Ergodic Theory and Differentiable Dynamics (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  19. P. Moran, Additive functions of intervals and Hausdorff dimension,Proc. Camb. Philos Soc. 42:15–23 (1946).

    Google Scholar 

  20. L. Olsen, Self-affine multifractal Sierpinsky sponges in ℝ t , preprint.

  21. L. Olsen, A multifractal formalism, preprint.

  22. W. Parry, Symbolic dynamics and transformations of the unit interval,Trans. AMS 122:368–378 (1966).

    Google Scholar 

  23. W. Parry and M. Pollicott, Zeta functions and the periodic orbit structures of hyperbolic dynamics,Asterisque 187–188 (1990).

  24. Y. Pesin, On rigorous mathematical definition of correlation dimension and generalized spectrum for dimensions.J. Stat. Phys. 7 (1993).

  25. Y. Pesin,Dimension Theory in Dynamical Systems. Rigorous Results and Applications (University of Chicago Press Chicago, 1996).

    Google Scholar 

  26. Y. Pesin and A. Tempelman, Correlation dimension of measures invariant under group actions,Random Computational Dynam., to appear.

  27. Y. Pesin and H. Weiss, On the dimension of deterministic and random Cantor-like sets. symbolic dynamics, and the Eckmann-Ruelle conjecture, Submitted.

  28. Y. Pesin and H. Weiss, On the dimension of deterministic and random Cantor-like sets,Math. Res. Lett. 1:519–529 (1994).

    Google Scholar 

  29. Y. Pesin and H. Weiss, The multifractal analysis of Gibbs measures: Motivation, mathematical foundation, and examples, Chaos, to appear.

  30. Y. Pesin and C. B. Yue, Hausdorff dimension of measures with non-zero Lyapunov exponents and local product structure, PSU preprint (1993).

  31. A. Rand, The singularity spectrum for cookie-cutters,Ergod. Theory Dynam. Syst. 9: 527–541 (1989).

    Google Scholar 

  32. R. Riedi, An improved multifractal formalism and self-similar measures,J. Math. Anal. Appl. (1995).

  33. R. T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, New Jersey, 1970).

    Google Scholar 

  34. D. Ruelle,Thermodynamic Formalism (Addison-Wesley, Reading, Massachusetts, 1978).

    Google Scholar 

  35. D. Ruelle, Repellers for real analytic maps,Ergod. Theory Dynam. Syst. 2:99–107 (1995).

    Google Scholar 

  36. M. Shereshevsky, A complement to Young's theorem on measure dimension: The difference between lower and upper pointwise dimension,Nonlinearity 4:15–25 (1991).

    Google Scholar 

  37. D. Simpelaere, Dimension spectrum of axiom A diffeomorphisms. II. Gibbs measures.J. Stat. Phys. 76:1359–1375 (1994).

    Google Scholar 

  38. T. Tél, ITP Budapest Report No. 462 (1987).

  39. S. Vaienti, Generalized spectra for dimensions of strange sets,J. Phys. A 21:2313–2320 (1988).

    Google Scholar 

  40. H. Weiss, The Lyapunov and dimension spectra of equilibrium measures for conformal expanding maps, Preprint (1996).

  41. L. S. Young, Dimension, entropy, and Lyapunov exponents,Ergod. Theory and Dynam. Syst. 2:109–124 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pesin, Y., Weiss, H. A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions. J Stat Phys 86, 233–275 (1997). https://doi.org/10.1007/BF02180206

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02180206

Key Words

Navigation