Skip to main content
Log in

Free left arms as precursor molecules in the evolution of Alu sequences

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The dimeric Alu molecule of human and other primates is composed of a left and a right arm that are very similar but show characteristic differences. If the Alu sequence has arisen through the fusion of monomeric precursor molecules, the traces of such precursor genes are expected still to be present in contemporary primate DNA. We report finding seven independent human DNA sequences that qualify s descendants of a left-arm precursor gene. Some characteristics in primary and secondary structures of these sequences are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bains W (1986) The multiple origins of human Alu sequences. J Mol Evol 23:189–199

    PubMed  Google Scholar 

  • Britten RJ, Baron WF, Stout D, Davidson EH (1988) Sources and evolution of human Alu repeated sequences. Proc Natl Acad Sci USA 85:4770–4774

    PubMed  Google Scholar 

  • Britten RJ, Stout D, Davidson EH (1989) The current source of human Alu retroposons is a conserved gene shared with Old World monkey. Proc Natl Acad Sci USA 86:3718–3722

    PubMed  Google Scholar 

  • Buckler CE, Salzman NP (1986) Annotated nucleotide sequence and restriction site lists for selected papovavirus strains. In: Salzman NP (ed) The Papovaviridae, vol I. Plenum, New York, pp 379–446

    Google Scholar 

  • Chen M-J, Shimada T, Moulton AD, Cline A, Humphries RK, Maizel J, Nienhuis AW (1984) The functional human dihydrofolate reductase gene. J Biol Chem 259:3933–3943

    PubMed  Google Scholar 

  • Cotter RL, McPhie P, Gratzer WB (1967) Internal organization of the ribosome. Nature 216:864–868

    PubMed  Google Scholar 

  • Daniels GR, Deininger PL (1985) Integration site preferences of the Alu family and similar repetitive DNA sequences. Nucleic Acids Res 13:8939–8954

    PubMed  Google Scholar 

  • Degen SJF, Rajput B, Reich E (1986) The human tissue plasminogen activator gene. J Biol Chem 261:6972–6985

    PubMed  Google Scholar 

  • Deininger PL, Daniels GR (1986) The recent evolution of mammalian repetitive DNA elements. Trends Genet 2:76–80

    Article  Google Scholar 

  • Emi M, Wu LL, Robertson MA, Myers RL, Hegele RA, Williams RR, Lalouel J-M (1988) Genotyping and sequence analysis of apolipoprotein E isoforms. Genomics 3:373–379

    Article  PubMed  Google Scholar 

  • Evans MJ, Scarpulla C (1988) The human somatic cytochrome gene: two classes of processed pseudogenes demarcate a period of rapid molecular evolution. Proc Natl Acad Sci USA 85: 9625–9629

    PubMed  Google Scholar 

  • Faulkner DV, Jurka J (1988) Multiple aligned sequence editor (MASE). Trends Biochem Sci 13:321–322

    Article  PubMed  Google Scholar 

  • Gundelfinger ED, Di Carlo M, Zopf D, Melli M (1984) Structure and evolution of the 7SL RNA component of the signal recognition particle. EMBO J 2:2325–2332

    Google Scholar 

  • Gutell RR, Weiser B, Woese CR, Noller HF (1985) Comparative anatomy of 16-S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol 32:155–217

    PubMed  Google Scholar 

  • Harada F, Kato N (1980) Nucleotide sequences of 4.5S RNAs associated with poly (A)-containing RNAs of mouse and hamster cells. Nucleic Acids Res 8:1273–1285

    PubMed  Google Scholar 

  • Jelinek WR, Toomey TP, Leinwand L, Duncan CH, Biro PA, Choudary PV, Weissman SM, Rubin CM, Houck CM, Deininger PL, Schmid CW (1980) Ubiquitous, interspersed repeated sequences in mammalian genomes. Proc Natl Acad Sci USA 77:1398–1401.

    PubMed  Google Scholar 

  • Johnson EM, Jelinek WR (1986) Replication of a plasmid bearing a humanAlu-family repeat in monkey COS-7 cells. Proc Natl Acad Sci USA 83:4660–4664

    PubMed  Google Scholar 

  • Jurka J (1990) Novel families of interspersed repetitive elements from the human genome. Nucleic Acids Res 18:137–140

    PubMed  Google Scholar 

  • Jurka J, Milosavljevic A (1991) Reconstruction and analysis of human Alu genes. J Mol Evol 32:105–121

    PubMed  Google Scholar 

  • Jurka J, Smith T (1988) A fundamental division in the Alu family of repeated sequences. Proc Natl Acad Sci USA 85: 4775–4778

    PubMed  Google Scholar 

  • Labuda D, Striker G (1989) Sequence conservation in Alu evolution. Nucleic Acids Res 17:2477–2491

    PubMed  Google Scholar 

  • Li W-Y, Ram R, Henning D, Epstein P, Busch H (1982) Nucleotide sequences of 7S RNA. J Biol Chem 257:5136–5142

    PubMed  Google Scholar 

  • Mancuso DJ, Tuley EA, Westfield LA, Worral NK, Shelton-Inloes BB, Sorace JM, Alevy YG, Sadler JE (1989) Structure of the gene for human von Willebrand factor. J Biol Chem 25:19514–19527

    Google Scholar 

  • Marchuk D, McCrohon S, Fuchs E (1985) Complete sequence of a gene encoding a human type I keratin: sequences homologous to enhancer elements in the regulatory region of the gene. Proc Natl Acad Sci USA 82:1609–1613

    PubMed  Google Scholar 

  • Neckelmann N, Warner CK, Chung A, Kudoh J, Minoshima S, Fukuyama R, Maekawa M, Shimizu Y, Shimizu N, Liu JD, Wallace DC (1989) The human ATP synthase β subunit gene: sequence analysis, chromosome assignment and differential expression. Genomics 5:829–843

    Article  PubMed  Google Scholar 

  • Quentin Y (1988) The Alu family developed through successive waves of fixation closely connected with primate lineage history. J Mol Evol 27:194–202

    PubMed  Google Scholar 

  • Quentin Y (1989) Succesive waves of fixation of B1 variants in rodent lineage history. J Mol Evol 28:299–305

    PubMed  Google Scholar 

  • Reeves SA, Helman LJ, Allison A, Israel M (1989) Molecular cloning and primary structure of human glial fibrillary acidic protein. Proc Natl Acad Sci USA 86:5178–5182

    PubMed  Google Scholar 

  • Rogers JH (1985) The origin and evolution of retroposons. Int Rev Cytol 93:187–279

    PubMed  Google Scholar 

  • Savtchenko ES, Freedberg IM, Choi I-Y, Blumenberg M (1988) Inactivation of human keratin genes: the spectrum of mutations in the sequence of an acidic keratin pseudogene. Mol Biol Evol 5:97–108

    PubMed  Google Scholar 

  • Siegel V, Walter P (1986) Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact. Nature 320:81–84

    Article  PubMed  Google Scholar 

  • Sinnet D, Richer C, Deragon JM, Labuda, D (1991)Alu RNA secondary structure consists of two independent 7SL RNA-like folding units. J Biol Chem (in press)

  • Slagel V, Flemington E, Traina-Dorge V, Bradshaw H, Deininger P (1987) Clustering and subfamily relationships of the Alu family in the human genome. Mol Biol Evol 4:19–29

    PubMed  Google Scholar 

  • Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 145:195–197

    Article  Google Scholar 

  • Toyonaga B, Yoshikai Y, Vadasz V, Chin B, Mak TW (1985) Organization and sequences of the diversity, joining, and constant region genes of the human T-cell receptor β-chain. Proc Natl Acad Sci USA 82:8624–8628

    PubMed  Google Scholar 

  • Ullu E, Tschudi C (1984) Alu sequences are processed 7SL RNA genes. Nature 312:171–172

    PubMed  Google Scholar 

  • Ullu E, Weiner AM (1984) Human genes and pseudogenes for the 7SL RNA component of signal recognition particle. EMBO J 3:3303–3310

    PubMed  Google Scholar 

  • Walter P, Gilmore R, Blobel G (1984) Protein translocation across the endoplasmic reticulum. Cell 38:5–8

    Article  PubMed  Google Scholar 

  • Watson JB, Sutcliffe JG (1987) Primate brain-specific cytoplasmic transcript of the Alu repeat family. Mol Cell Biol 7: 3324–3327

    PubMed  Google Scholar 

  • Wilbur WJ, Lipman DJ (1983) Rapid similarity searches of nucleic acid and protein data bases. Proc Natl Acad Sci USA 80:726–730

    PubMed  Google Scholar 

  • Willard C, Nguyen HT, Schmid CW (1987) Existence of at least three distinct Alu subfamilies. J Mol Evol 26:180–186

    PubMed  Google Scholar 

  • Zwieb C (1985) The secondary structure of the 7SL RNA in the signal recognition particle: functional implications. Nucleic Acids Res 13:6105–6124

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurka, J., Zuckerkandl, E. Free left arms as precursor molecules in the evolution of Alu sequences. J Mol Evol 33, 49–56 (1991). https://doi.org/10.1007/BF02100195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100195

Key words

Navigation