Skip to main content
Log in

The gramicidin a channel: A review of its permeability characteristics with special reference to the single-file aspect of transport

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Gramicidin A forms univalent cation-selective channels of ≈4 Å diameter in phospholipid bilayer membranes. The transport of ions and water throughout most of the channel length is by a singlefile process; that is, cations and water molecules cannot pass each other within the channel. The implications of this single-file mode of transport for ion movement are considered. In particular, we show that there is no significant electrostatic barrier to ion movement between the energy wells at the two ends of the channel. The rate of ion translocation (e.g., Na+ or Cs+) through the channel between these wells is limited by the necessity for an ion to move six water molecules in single file along with it; this also limits the maximum possible value for channel conductance. At all attainable concentrations of NaCl, the gramicidin A channel never contains more than one sodium ion, whereas even at 0.1M CsCl, some channels contain two cesium ions. There is no necessity to postulate more than two ion-binding sites in the channel or occupancy of the channel by more than two ions at any time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, O.S. 1975. Ion-specificity of gramicidin A channels. V-th International Biophysics Congress. p. 112 (Abstr.)

  • Andersen, O.S. 1978. Ion transport across simple membranes.In: Renal Function. G.H. Giebisch and E.F. Purcell, editors. pp. 71–99. Josiah Macy, Jr. Foundation, New York

    Google Scholar 

  • Andersen, O.S., Barrett, E.W., Weiss, L.B. 1981. On the position of the alkali metal cation binding sites in gramicidin channels.Biophys. J. 33:63a

    Google Scholar 

  • Andersen, O.S., Procopio, J. 1980. Ion movement through gramicidin A channels. On the importance of the aqueous diffusion resistance and ion-water interactions.Acta Physiol. Scand. Suppl. 481:27

    Google Scholar 

  • Apell, H.-J., Bamberg, E., Alpes, H. 1979. Dicarboxylic acid analogs of gramicidin A: Dimerization kinetics and single channel properties.J. Membrane Biol. 50:271

    Google Scholar 

  • Bamberg, E., Apell, H.-J., Alpes, H. 1977. Structure of the gramicidin A channel: Discrimination between the ΠL,D and the β helix by electrical measurements with lipid bilayer membranes.Proc. Nat. Acad. Sci. USA 74:2402

    Google Scholar 

  • Bamberg, F., Armstrong, C.M. 1972. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons.J. Gen. Physiol. 60:588

    Google Scholar 

  • Davson, H. 1962. Growth of the concept of the paucimolecular membrane.Circulation 26:1022

    Google Scholar 

  • Eisenman, G., Sandblom, J., Neher, E. 1977. Ionic selectivity, saturation, binding, and block in the gramicidin A channel: A preliminary report.In. Metal-Ligand Interactions in Organic Chemistry and Biochemistry. B. Pullman and N. Goldblum, editors. Part 2, pp. 1–36. Reidel, Dordrecht-Holland

    Google Scholar 

  • Eisenman, G., Sandblom, J., Neher, E. 1978. Interactions in cation permeation through the gramicidin channel. Cs, Rb, K, Na, Li, Tl, H and effects of anion binding.Biophys. J. 22:307

    Google Scholar 

  • Essig, A., Kedem, O., Hill, T.L. 1966. Net flow and tracer flow in lattice and carrier models.J. Theoret. Biol. 13:72

    Google Scholar 

  • Finkelstein, A. 1974. Aqueous pores created in thin lipid membranes by the antibiotics nystatin, amphotericin B, and gramicidin A: Implications for pores in plasma membranes.In: Drugs and Transport Processes. pp. 241–250. B.A. Callingham, editor. MacMillan, London

    Google Scholar 

  • Finkelstein, A., Mauro, A. 1977. Physical principles and formalisms of electrical excitability.In: Handbook of Physiology. The Nervous System. E.R. Kandel, editor. Vol. 1, pp. 161–213. American Physiological Society, Bethesda

    Google Scholar 

  • Finkelstein, A., Rosenberg, P.A. 1979. Single-file transport: Implications for ion and water movement through gramicidin A channels.In: Membrane Transport Processes. C.F. Stevens and R.W. Tsien, editors. Vol. 3, pp. 73–88. Raven Press. New York

    Google Scholar 

  • Groot, S.R. de 1958. Thermodynamics of Irreversible Processes. pp. 185–189. North-Holland, Amsterdam

    Google Scholar 

  • Hägglund, J., Enos, B., Eisenman, G. 1979. Multi-site, multibarrier, multioccupancy models for the electrical behavior of single filing channels like those of gramicidin.Brain Res. Bull. 4:154

    Google Scholar 

  • Hagiwara, S., Miyazaki, S., Krasne, S., Ciani, S. 1977. Anomalous permeabilities of the egg cell membrane of a starfish in K+−Tl+ mixtures.J. Gen. Physiol. 70:269

    Google Scholar 

  • Hagiwara, S., Takahashi, K. 1974. The anamalous rectification and cation selectivity of the membrane of a starfish egg cell.J. Membrane Biol. 18:61

    Google Scholar 

  • Heckmann, K. 1965. Zur Theorie der “single file” Diffusion. I. Z. Phys. Chem., N.F.44:184

    Google Scholar 

  • Heckmann, K. 1972. Single file diffusion.In: Biomembranes. F. Kreuzer and J.F.G. Slegers, editors. Vol. 3, pp. 127–153. Plenum, New York

    Google Scholar 

  • Hille, B. 1975a. Ionic selectivity of Na and K channels in nerve membranes.In: Membranes. Lipid Bilayers and Biological Membranes: Dynamic Properties. G. Eisenman, editor. Vol. 3, pp. 255–323 Marcel Dekker, New York

    Google Scholar 

  • Hille, B. 1975b. Ion selectivity, saturation, and block in sodium channels.J. Gen. Physiol. 66:535

    Google Scholar 

  • Hille, B. 1979. Rate theory models for ion flow in ionic channels of nerve and muscle.In: Membrane Transport Processes. C.F. Stevens and R.W. Tsien, editors. Vol.3, pp. 5–16, Raven Press, New York

    Google Scholar 

  • Hille, B., Schwarz, W. 1978. Potassium channels as multi-ion single-file pores.J. Gen. Physiol. 72:409

    Google Scholar 

  • Hladky, S.B., Haydon, D.A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel.Biochim. Biophys. Acta 274:294

    Google Scholar 

  • Hladky, S.B., Urban, B.W., Haydon, D.A. 1979. Ion movements in the gramicidin pore.In: Membrane Transport Processes. C.F. Stevens and R.W. Tsien, editors. Vol. 3, pp. 89–103. Raven Press, New York

    Google Scholar 

  • Höber, R. 1945. Physical Chemistry of Cells and Tissues. Churchill, London

    Google Scholar 

  • Hodgkin, A.L., Keynes, R.D. 1955. The potassium permeability of a giant nerve fibre.J. Physiol. (London) 128:61

    Google Scholar 

  • Koeppe, R.E., Berg, J.M., Hodgson, K.O., Stryer, L. 1979. Gramicidin A crystals contain two cation binding sites per channel.Nature (London)279:723

    Google Scholar 

  • Koeppe, R.E., II, Hodgson, K.O., Stryer, L. 1978. Helical channels in crystals of gramicidin A and of a cesiumgramicidin A complex: An X-ray diffraction study.J. Mol. Biol. 121:41

    Google Scholar 

  • Kohler, H.-H., Heckmann, K. 1980. The relation between binding affinities and selectivity of a pore.J. Membrane Sci. 6:45

    Google Scholar 

  • Läuger, P. 1973. Ion transport through pores: A rate-theory analysis.Biochim. Biophys. Acta 311:423

    Google Scholar 

  • Levitt, D.G. 1974. A new theory of transport for cell membrane pores. I. General theory and application to red cell.Biochim. Biophys. Acta 373:115

    Google Scholar 

  • Levitt, D.G. 1978. Electrostatic calculations for an ion channel. II. Kinetic behavior of the gramicidin A channel.Biophys. J. 22:221

    Google Scholar 

  • Levitt, D.G., Elias, S.R., Hautman, J.M. 1978. Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin.Biochim. Biophys. Acta 512:436

    Google Scholar 

  • Lorenz, P.B. 1952. The phenomenology of electro-osmosis and streaming potential.J. Phys. Chem. 56:775

    Google Scholar 

  • McBride, D., Szabo, G. 1978. Blocking of gramicidin channel conductance by Ag+.Biophys. J. 21:25a

    Google Scholar 

  • Miller, C., Racker, E. 1979. Reconstitution of membrane transport functions.In: The Receptors. R.D. O'Brien, editor. Vol. 1, pp. 1–31. Plenum, New York

    Google Scholar 

  • Mueller, P., Rudin, D.O. 1967. Development of K+−Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics.Biochem. Biophys. Res. Commun. 26:398

    Google Scholar 

  • Mueller, P., Rudin, D.O. 1969. Translocations in bimolecular lipid membranes: Their role in dissipative and conservative bioenergy transductions.In: Current topics in Bioenergetics. Vol. 3, pp. 157–249. Academic Press, New York

    Google Scholar 

  • Myers, V.B., Haydon, D.A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity.Biochim. Biophys. Acta 274:313

    Google Scholar 

  • Neher, E. 1975. Ionic specificity of the gramicidin channel and the thallous ion.Biochim. Biophys. Acta 401:540 (See also)469:359 forErrata)

    Google Scholar 

  • Neher, E., Sandblom, J., Eisenman, G. 1978. Ionic selectivity, saturation, and block in gramicidin A channels. II. Saturation behavior of single channel conductances and evidence for the existence of multiple binding sites in the channel.J. Membrane Biol. 40:97

    Google Scholar 

  • Procopio, J., Andersen, O.S. 1979. Ion tracer fluxes through gramicidin A modified lipid bilayers.Biophys. J. 25:8a

    Google Scholar 

  • Ramachandran, G.N., Chandrasekaran, R. 1972. Studies on dipeptide conformation and on peptides with sequences of alternatingl andd residues with special reference to antibiotic and ion transport peptides.In: Progress in Peptide Research. Vol. 2, pp. 195–215. Gordon, New York

    Google Scholar 

  • Rosenberg, P.A., Finkelstein, A. 1978a. Interactions of ions and water in gramicidin A channels. Streaming potentials across lipid bilayer membranes.J. Gen. Physiol. 72:327

    Google Scholar 

  • Rosenberg, P.A., Finkelstein, A., 1978b. Water permeability of gramicidin A-treated lipid bilayer membranes.J. Gen. Physiol. 72:341

    Google Scholar 

  • Rothstein, A., Cabantchik, Z.I., Knauf, P. 1976. Mechanism of anion transport in red blood cells: Role of membrane proteins.Fed. Proc. 35:3

    Google Scholar 

  • Sandblom, J., Eisenman, G., Neher, E. 1977. Ionic selectivity, saturation and block in gramicidin A channels: I. Theory for the electrical properties of ion selective channels having two pairs of binding sites and multiple conductance states.J. Membrane Biol. 31:383

    Google Scholar 

  • Sarges, R., Witkop, B. 1965a. Gramicidin. V. The structure of valine- and isoleucine-gramicidin A.J. Am. Chem. Soc. 87:2011

    Google Scholar 

  • Sarges, R., Witkop, B. 1965b. Gramicidin A. VI. The synthesis of valine- and isoleucine-gramicidin A.J. Am. Chem. Soc. 87:2020

    Google Scholar 

  • Schagina, L.V., Grinfeldt, A.E., Lev, A.A. 1978. Interaction of cation fluxes in gramicidin A channels in lipid bilayer membranes.Nature (London) 273:243

    Google Scholar 

  • Segrest, J.P., Feldmann, R.J. 1974. Membrane proteins: Aminoacid sequence and membrane penetration.J. Mol. Biol. 87:853

    Google Scholar 

  • Singer, S.J. 1974. The molecular organization of membranes.Annu. Rev. Biochem. 43:805

    Google Scholar 

  • Teorell, T. 1953. Transport processes and electrical phenomena in ionic membranes.Prog. Biophysics. 3:305

    Google Scholar 

  • Tosteson, D.C., Andreoli, T.E., Tieffenberg, M., Cook, P. 1968. The effects of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes.J. Gen. Physiol. 51:373

    Google Scholar 

  • Urban, B.W., Hladky, S.B. 1979. Ion transport in the simplest single file pore.Biochim. Biophys. Acta 554:410

    Google Scholar 

  • Urban, B.W., Hladky, S.B., Haydon, D.A. 1978. The kinetics of ion movements in the gramicidin channel.Fed. Proc. 37:2628

    Google Scholar 

  • Urban, B.W., Hladky, S.B., Haydon, D.A. 1980. Ion movements in gramicidin pores. An example of single file transport.Biochim. Biophys. Acta 602:331

    Google Scholar 

  • Urry, D.W. 1971. The gramicidin A transmembrane channel: A proposed ΠL,D.Proc. Natl. Acad. Sci. USA 68:672

    Google Scholar 

  • Urry, D.W. 1972. Protein conformation in biomembranes: Optical rotation and absorption of membrane suspensions.Biochim. Biophys. Acta 265:115

    Google Scholar 

  • Urry, D.W., Long, M.M., Jacobs, M., Harris, R.D. 1975. Conformation and molecular mechanisms of carriers and channels.Ann. N.Y. Acad. Sci. 264:203

    Google Scholar 

  • Urry, D.W., Venkatachalaen, C.M., Spishi, A., Läuger, P., Khaled, M.A. 1980. Rate theory calculation of gramicidin single-channel currents using NMR-derived rate constants.Proc. Natl. Acad. Sci. USA 77:2028

    Google Scholar 

  • Ussing, H.H. 1949. The distinction by means of tracers between active transport and diffusion. The transfer of iodide across the isolated frog skin.Acta Physiol. Scand. 19:43

    Google Scholar 

  • Veatch, W.R., Blout, E.R. 1974. The aggregation of gramicidin A in solution.Biochemistry 13:5257

    Google Scholar 

  • Veatch, W.R., Fossel, E.T., Blout, E.R. 1974. The conformation of gramicidin A.Biochemistry 13:5249

    Google Scholar 

  • Veatch, W.R., Mathies, R., Eisenberg, M., Stryer, L. 1975. Simultaneous florescence and conductance studies of planar bilayer membranes containing a highly active and fluorescent analog of gramicidin A.J. Mol. Biol. 99:219

    Google Scholar 

  • Veatch, W., Stryer, L. 1977. The dimeric nature of the gramicidin A transmembrane channel: Conductance and fluorescence energy transfer studies of hybrid channels.J. Mol. Biol. 113:89

    Google Scholar 

  • Weinstein, S., Wallace, B.A., Blout, E.R., Morrow, J.S., Veatch, W. 1979. Conformation of gramicidin A channel in phospholipid vesicles: A13C and19F nuclear magnetic resonance study.Proc. Natl. Acad. Sci. USA 76:4230

    Google Scholar 

  • Zingsheim, H.P., Neher, E. 1974. The equivalence of fluctuation analysis and chemical relaxation measurements: A kinetic study of ion pore formation in thin lipid membranes.Biophys. Chem. 2:297

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkelstein, A., Andersen, O.S. The gramicidin a channel: A review of its permeability characteristics with special reference to the single-file aspect of transport. J. Membrain Biol. 59, 155–171 (1981). https://doi.org/10.1007/BF01875422

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01875422

Keywords

Navigation