Skip to main content
Log in

Evolution of cytochromec investigated by the maximum parsimony method

Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Rates of evolution for cytochromec over the past one billion years were calculated from a maximum parsimony dendrogram which approximates the phylogeny of 87 lineages. Two periods of evolutionary acceleration and deceleration apparently occurred for the cytochromec molecule. The tempo of evolutionary change indicated by this analysis was compared to the patterns of acceleration and deceleration in the ancestry of several other proteins The synchrony of these tempos of molecular change supports the notion that rapid genetic evolution accompanied periods of major adaptive radiations.

Rates of change at different times in several structural-functional areas of cytochromec were also investigated in order to test the Darwinian hypothesis that during periods of rapid evolution, functional sites accumulate proportionately more substitutions than areas with no known function. Rates of change in four proposed functional groupings of sites were therefore compared to rates in areas of unknown function for several different time periods. This analysis revealed a significant increase in the rate of evolution for sites associated with the regions of cytochromec oxidase and reductase interaction during the period between the emergence of the eutherian ancestor to the emergence of the anthropoid ancestor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed AJ, Smith HT, Smith MB, Millett FS (1978) Biochemistry 17:2479–2483

    Google Scholar 

  • Borden D, Ferguson-Miller S, Tarr G. Rodriguez D (1978) Fed Proc 36(6):1517

    Google Scholar 

  • Brautigan DL, Ferguson-Miller S, Margoliash E (1978a) J Biol Chem 253:130–139

    Google Scholar 

  • Brautigan DL, Ferguson-Miller S, Tarr G, Margoliash E (1978b) J Biol Chem 253:140–148

    Google Scholar 

  • Cloud P (1974) Am Sci 62:5466

    Google Scholar 

  • Czelusniak J, Goodman M, Moore GW (1978) J Mol Evol 11:75–85

    Google Scholar 

  • Dayhoff MO (1972) Atlas of protein sequence and structure, vol 5. The National Biomedical Research Foundation, Washington DC, p D7

    Google Scholar 

  • Dayhoff MO (1973) Atlas of protein sequence and structure, vol 5 Suppl I, The National Biomedical Research Foundation, Washington DC, p S12

    Google Scholar 

  • Dayhoff MO (1976) Atlas of protein sequence and structure, vol 5, Suppl 2, The National Biomedical Research Foundation, Washington DC, p 25

    Google Scholar 

  • Dayhoff MO (1978) Atlas of protein sequence and structure, vol 5, Suppl 3, The National Biomedical Research Foundation, Washington DC, p 29

    Google Scholar 

  • Dickerson RE (1971) J Mol Evol 1:26–45

    Google Scholar 

  • Dickerson RE (1972) Sci Am 226:58–73

    Google Scholar 

  • Dickerson RE (1980) Personal communication

  • Dickerson RE, Timkovich R (1975) In: Boyer PA (ed) The Enzymes, vol XI, Oxidation-Reduction, part A, Academic Press, New York, p 397

    Google Scholar 

  • Dickerson RE, Timkovich R, Almassy RJ (1976) J Mol Biol 100:473–491

    Google Scholar 

  • Farris JS (1972) Am Nat 106:645–668

    Google Scholar 

  • Fasman GD (ed) (1976) Handbook of Biochemistry and Molecular Biology, vol III. Proteins. CRC Press, Cleveland, p 268

    Google Scholar 

  • Ferguson-Miller S, Brautigan DL, Margoliash E (1978) J Biol Chem 253:149–159

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Science 155:279–284

    Google Scholar 

  • Fitch WM, Langley CH (1968) Fed Proc 35:2092–2097

    Google Scholar 

  • Goodman M (1976) In: Goodman M, Tashian RE (eds) Molecular Anthropology. Plenum Press, New York, p 321

    Google Scholar 

  • Goodman M, Czelusniak J (1980) In: Protides of the Biological Fluids (in press)

  • Goodman M, Moore GW (1971) Syst Zool 20(1):19–62

    Google Scholar 

  • Goodman M, Moore GW (1977) J Mol Evol 10:7–47

    Google Scholar 

  • Goodman M, Moore GW, Barnabas J, Matsuda G (1974) J Mol Evol 3:1–48

    Google Scholar 

  • Goodman M, Moore GW, Matsuda G (1975) Nature 253:603–608

    Google Scholar 

  • Goodman M, Czelusniak J, Moore GW, Romero-Herrera AE, Matsuda G (1979a) Syst Zool 28:132–163

    Google Scholar 

  • Goodman M, Rechere J-F, Haiech J, Demaille JG (1979b) J Mol Evol 13:331–352

    Google Scholar 

  • Gould SJ, Eldredge N (1977) Paleobiology. 3(2)115–151

    Google Scholar 

  • Gupta AP (1979) Arthropod Phylogeny. Van Nostrand Reinhold, New York

    Google Scholar 

  • Jemmerson R, Margoliash E (1979A) J Biol Chem 254(24):12706–12716

    Google Scholar 

  • Jemmerson R, Margoliash E (1979) Nature 282:468–471

    Google Scholar 

  • Kang CH, Brautigan DL, Osheroff N (1978) J Biol Chem 253:6505–6510

    Google Scholar 

  • Keilin D (1925) Proc Roy Soc Ser B98:321

    Google Scholar 

  • Keilin D (1966) The history of cell respiration and cytochrome. Cambridge University Press, London

    Google Scholar 

  • Konig BW, Osheroff N, Wilms J, Muijsers AO, Dikker HL Margoliash E (1980) FEBS Lett 111:395–398

    Google Scholar 

  • Langley CH, Fitch WM (1973) In: Morton (ed) Genetic structure of population, University of Hawaii Press, Honolulu, p 246

    Google Scholar 

  • Mandel N, Mandel C, Trus BL, Rosenberg J, Carlson G, Dickerson RD (1977) J Biol Chem 252(13):4619–4636

    Google Scholar 

  • Margoliash E (1963) Proc Natl Acad Sci 50:672

    Google Scholar 

  • Margoliash E, Ferguson-Miller S, Brautigan DL, Chiuiano AH (1976) In: Markham R, Horne RW (eds) Structure-function relationships in proteins. Elsevier/North Holland, Amsterdam, p 145

    Google Scholar 

  • Margoliash E, Ferguson-Miller S, Brautigan DL, Kang CH, Dethmers JK (1977) In: Van Dam K, Van Belder BF (eds) Structure and functions of energy-transducing membranes. Elsevier, North Holland, Amsterdam, p 69

    Google Scholar 

  • Margoliash E Fitch WM (1968) Ann NY Acad Sci 151:359

    Google Scholar 

  • Margoliash E, Fitch WM, Dickerson R (1968) Brookhaven Sym Biol 21:259

    Google Scholar 

  • Margoliash E Smith EL (1965) In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, p 221

    Google Scholar 

  • Margoliash E, Schejter A (1966) Adv Protein Chem 21:113

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard Univ Press, Cambridge

    Google Scholar 

  • McKenna MC (1969) Ann NY Acad Sci 167(1):217–240

    Google Scholar 

  • Moore GW (1971) Institute of Statistics Mimeograph Series, no 731. North Carolina State University, Raleigh NC

    Google Scholar 

  • Moore GW (1976) In: Goodman M, Tashian RE (eds) Molecular anthropology. Plenum Press, New York

    Google Scholar 

  • Moore GW (1977) J Theor Biol 66:95–106

    Google Scholar 

  • Moore GW, Barnabas J, Goodman M (1973) J Theor Biol 38 459–485

    Google Scholar 

  • Moore GW, Goodman M, Callahan C, Holmquist R, Moise H (1976) J Mol Biol 105:15–37

    Google Scholar 

  • Myer Y (1978) Fed Proc 37:1514

    Google Scholar 

  • Myer Y (1979) Fed Proc 38:639

    Google Scholar 

  • Ng S, Smith MB, Smith HT, Millett F (1976) Biochemistry 16:4975–4978

    Google Scholar 

  • Osheroff N, Jemmerson R, Speck SH, Ferguson-Miller S, Margoliash E (1979) J Biol Chem 254(24):12717–12724

    Google Scholar 

  • Osheroff N, Borden D, Koppenol WH, Margoliash E (1980) J Biol Chem 255:1689–1697

    Google Scholar 

  • Pettigrew G (1978) FEBS Lett 86:14–16

    Google Scholar 

  • Romer AS (1966) Vertebrate paleontology. University of Chicago Press, Chicago

    Google Scholar 

  • Schopf JW Haugh BN Molnar RE, Satterthevait DF (1973) J Paleontol 47:1–9

    Google Scholar 

  • Shaw DC, Williams KL, Smith E, Birt LM (1978) Biochim Biophys Acta 532:179–184

    Google Scholar 

  • Smith HT, Staudenmayer N Millett F (1977) Biochemistry 16:4971–4978

    Google Scholar 

  • Smith L, Davies HC, Nava M (1974) J Biol Chem 249(9):2904–2910

    Google Scholar 

  • Smith L, Davies HC Nava ME (1976) Biochem 15(26):5827–5831

    Google Scholar 

  • Sokal RR, Micherner CD (1958) Univ Kan Sci Bull 38:1409–1438

    Google Scholar 

  • Speck SH, Ferguson-Miller S, Osheroff N, Margoliash E (1979) Proc Natl Acd Sci 76(1):155–159

    Google Scholar 

  • Speck SH, Koppenol WH, Osheroff N, Dethmers JK, Kang CH Margoliash E Ferguson-Miller S (1980) In: Lee CP, Schatz G, Ernster L (eds) Membrane bioenergetics. Addison-Wesley Publishing Co, Reading, p 31

    Google Scholar 

  • Stanley SM (1975) Proc Natl Acad Sci 72(2):646–650

    Google Scholar 

  • Staudenmayer N, Ng S, Smith MB, Millett F (1977) Biochemis-Biochemistry 15:3198–3205

    Google Scholar 

  • Staudenmayer N, Ng S, Smith MB, Millett F (1977) Biochemiytry 16:600–604

    Google Scholar 

  • Takano T, Dickerson RE (1980) Manuscript submitted to the Proceeding of the National Academy of Science

  • Thompson RB, Borden D Tarr GE, Margoliash E (1978) J Biol Chem 253(24)895–901

    Google Scholar 

  • Timkovich R, Dickerson RE (1976) J Biol Chem 251(13):4033–4046

    Google Scholar 

  • Whittacker RH (1969) Science 163:150–160

    Google Scholar 

  • Young JZ (1962) The life of the vertebrates. University of Chicago Press, Chicago

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baba, M.L., Darga, L.L., Goodman, M. et al. Evolution of cytochromec investigated by the maximum parsimony method. J Mol Evol 17, 197–213 (1981). https://doi.org/10.1007/BF01732758

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732758

Keywords

Navigation