Skip to main content
Log in

Evolution and biological significance of human retroelements

  • Part A: Role Of Retrons, Retroelements, And Reverse Transcription In The Evolution Of Retroviruses And In Eukaryotic Genome Plasticity
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Retroelements comprise a substantial portion of the human genome. Their large number and ubiquitous distribution has led scientists to speculate about their evolutionary origin and their biological functions. Human endogenous retroviruses and their retrotransposon relatives represent a reservoir of possibly pathogenic retroviral genes that may be activated spontaneously or by environmental conditions. They can act as insertion mutagens and activate or inactivate cellular genes, or may be involved in chromosome aberrations by recombination of related elements on different chromosomal locations. Retroviral gene products themselves may also be pathogenic and, for example, could be implicated in the development of tumors and autoimmune diseases. On the other hand, endogenous retroviral elements and nonviral retroposons are thought to have played an important role in shaping the genomes of vertebrates by intracellular transposition events and by generating hot spots of recombination. In the course of time, some of these elements have acquired cellular functions, such as, for instance, in the regulation of gene expression. Therefore, the role of human endogenous retroviruses and retroposons in biological processes is currently a subject of great interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Temin H.M., Mol Biol Evol2 455–468, 1985.

    Google Scholar 

  2. Temin H.M., Nature339 254–255, 1989.

    Google Scholar 

  3. Finnegan D.J., Trends Genet5 103–107, 1989.

    Google Scholar 

  4. Hull R. and Will H., Trends Genet5 357–359, 1989.

    Google Scholar 

  5. Wilkinson D.A., Mager D.L., and Leong J.-A. in Levy J (ed).The Retroviridae, Vol. 3. Plenum Press, New York, 1994, pp. 465–535.

    Google Scholar 

  6. Eickbush T.H. in Morse S.S. (ed).The Evolutionary Biology of Viruses. Raven Press, New York, 1994, pp. 121–157.

    Google Scholar 

  7. Deininger P.L. in Berg D.E. and Howe M.M. (eds).Mobile DNA. American Society of Microbiology, Washington, D.C., 1989, pp. 619–636.

    Google Scholar 

  8. Fanning T.G. and Singer M.F., Biochim Biophys Acta910 203–212, 1987.

    Google Scholar 

  9. Singer M.F. and Skowronski J., Trends Biochem Sci10 119–122, 1985.

    Google Scholar 

  10. Hutchison C.A. III, Hardies S.C., Loeb D.D., Shehee W.R., and Edgell M.H. in Berg D.E. and Howe M.M. (eds).Mobile DNA. American Society of Microbiology, Washington D.C., 1989, pp. 593–617.

    Google Scholar 

  11. Larsson E., Kato N., and Cohen M., Curr Top Microbiol Immunol148 115–132, 1989.

    Google Scholar 

  12. Leib-Mösch C., Brack-Werner R., Werner T., Bachmann M., Faff O., Erfle V., and Hehlmann R., Cancer Res50(Suppl.), 5636–5642, 1990.

    Google Scholar 

  13. Becker Y., Virus Genes9 211–218, 1995.

    Google Scholar 

  14. Varmus H., and Brown P. in Berg D.E. and Howe M.M. (eds).Mobile DNA. American Society of Microbiology, Washington D.C., 1989, pp. 53–108.

    Google Scholar 

  15. Coffin J. in Levy J. (ed).The Retroviridae, Vol. 1. Plenum Press, New York, 1992, pp. 19–49.

    Google Scholar 

  16. Callahan R. in Lambert M., McDonald J., and Weinstein I. (eds).30. Banbury Report. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY., 1988, pp. 91–100.

    Google Scholar 

  17. Brack-Werner R., Leib-Mösch C., Werner T., Erfle V., and Hehlmann R., Haematol Blood Transfusion32 464–477, 1989.

    Google Scholar 

  18. Martin M.A., Bryan T., Rasheed S., and Khan A.S., Proc Natl Acad Sci USA78 4892–4896, 1981.

    Google Scholar 

  19. Bonner T.I., O'Connell C., and Cohen M., Proc Natl Acad Sci USA79 4709–4713, 1982.

    Google Scholar 

  20. O'Connell C., O'Brien S., Nash W.G., and Cohen M., Virology138 225–235, 1984.

    Google Scholar 

  21. Leib-Mösch C., Brack R., Werner T., Erfle V., and Hehlmann R., Virology155 666–677, 1986.

    Google Scholar 

  22. Kröger B. and Horak I., J Virol61 2071–2075, 1987.

    Google Scholar 

  23. Harada F., Tsukada N., and Kato N., Nucleic Acids Res15 9153–9162, 1987.

    Google Scholar 

  24. Mager D.L. and Henthorn P.S., Proc Natl Acad Sci USA81 7510–7514, 1984.

    Google Scholar 

  25. Maeda N., J Biol Chem260 6698–6709, 1985.

    Google Scholar 

  26. Samuelson L.C., Wiebauer K., Snow C.M., and Meisler M.H., Mol Cell Biol10 2513–2520, 1990.

    Google Scholar 

  27. Kannan P., Buettner R., Pratt D.R., and Tainsky M.A., J Virol65 6342–6348, 1991.

    Google Scholar 

  28. La Mantia G., Maglione D., Pengue G., Di Cristofano A., Simeone A., Lanfrancone L., and Lania L., Nucleic Acids Res19 1513–1520, 1991.

    Google Scholar 

  29. Mager D.L. and Freeman J.D., J Virol61 4060–4066, 1987.

    Google Scholar 

  30. Perl A., Rosenblatt J.D., Chen I.S.Y., DiVincenzo J.P., Bever R., Poiesz B.J., and Abraham G.N., Nucleic Acids Res17 6841–6854, 1989.

    Google Scholar 

  31. Callahan R., Drohan W., Tronick S., and Schlom J., Proc Natl Acad Sci USA79 5503–5507, 1982.

    Google Scholar 

  32. May F.E.B. and Westley B.R., J Virol60 743–749, 1984.

    Google Scholar 

  33. Deen K.C. and Sweet R.W., J Virol57 422–432, 1986.

    Google Scholar 

  34. Ono M., J Virol58 937–944, 1986.

    Google Scholar 

  35. Ono M., Yasunaga T., Miyata T., and Ushikubo H, J Virol60 589–598, 1986.

    Google Scholar 

  36. Medstrand P. and Blomberg J., J Virol67 6778–6787, 1993.

    Google Scholar 

  37. Steele P.E., Martin M.A., Rabson A.B., Bryan T., and O'Brien S.J., J Virol59 545–550, 1986.

    Google Scholar 

  38. Kambhu S., Falldorf P., and Lee J.S., Proc Natl Acad Sci USA87 4927–4931, 1990.

    Google Scholar 

  39. Zucchi I. and Schlessinger D., Genomics12 264–270, 1992.

    Google Scholar 

  40. Leib-Mösch C., Haltmeier M., Werner T., Geigl E.-M., Brack-Werner R., Francke U., Erfle V., and Hehlmann R., Genomics18 261–269, 1993.

    Google Scholar 

  41. Johnson P.M., Lyden T.W., and Mwenda J.M., Am J Reprod Immunol23 115–120, 1990.

    Google Scholar 

  42. Banki K., Maceda J., Hurley E., Ablonczy E., Mattson D., Szegedy L., Hung C., and Perl A., Proc Natl Acad Sci USA89 1939–1943, 1992.

    Google Scholar 

  43. Löwer R., Boller K., Hasenmaier B., Korbmacher C., Mueller-Lantzsch N., Löwer J., and Kurth R., Proc Natl Acad Sci USA90 4480–4484, 1993.

    Google Scholar 

  44. Boller K., König H., Sauter M., Mueller-Lantzsch N., Löwer R., Löwer J., and Kurth R., Virology196 349–353, 1993.

    Google Scholar 

  45. Vogetseder W., Dumfahrt A., Mayersbach P., Schonitzer D., and Dierich M.P., AIDS Res Hum Retroviruses9 687–694, 1993.

    Google Scholar 

  46. Mueller-Lantzsch N., Sauter M., Weiskircher A., Kramer K., Best B., Buck M., and Grässer F., AIDS Res Hum Retroviruses9 343–350, 1993.

    Google Scholar 

  47. Sauter M., Schommer S., Kremmer E., Remberger K., Dölken G., Lemm I., Buck M., Best B., Neumann-Haefelin D., and Mueller-Lantzch N., J Virol69 414–421, 1995.

    Google Scholar 

  48. Hirose Y., Takamatsu M., and Harada F., Virology192 52–61, 1993.

    Google Scholar 

  49. Wilkinson D.A., Goodchild N.L., Saxton T.M., Wood S., and Mager D.L., J Virol67 2981–2989, 1993.

    Google Scholar 

  50. Law M, Davidson, J., and Kao F.-T., Proc Natl Acad Sci USA79 7390–7394, 1982.

    Google Scholar 

  51. Sun L., Paulson K.E., Schmid C.W., Kadyk L., and Leinwand L., Nucleic Acids Res12 2669–2690, 1984.

    Google Scholar 

  52. Paulson K.E., Deka N., Schmid C.W., Misra R., Schindler C.W., Rush M.G., Kadyk L., and Leinwand L., Nature316 359–361, 1985.

    Google Scholar 

  53. Mermer B., Colb M., and Krontiris T.G., Proc Natl Acad Sci USA84 3320–3324, 1987.

    Google Scholar 

  54. Misra R., Shih A., Rush M., Wong E., and Schmid C., J Mol Biol196 233–240, 1987.

    Google Scholar 

  55. Fields C., Grady D., and Moyzis R., Genomics13 431–437, 1992.

    Google Scholar 

  56. Paulson K.E., Matera A.G., Deka N., and Schmid C.W., Nucleic Acids Res13 5199–5215, 1987.

    Google Scholar 

  57. Weiner A.M., Deininger P.L., and Efstratiadis A., Ann Rev Biochem55 631–661, 1986.

    Google Scholar 

  58. Mathias S.L., Scott A.F., Kazazian H.H., Boeke J.D., and Gabriel A., Science254 1808–1810, 1991.

    Google Scholar 

  59. Dombroski B.A., Scott A.F., and Kazazian H.H. Jr., Proc Natl Acad Sci USA90 6513–6517, 1993.

    Google Scholar 

  60. Rinehart F.P., Ritch T.G., Deininger P.L., and Schmid C.W., Biochemistry20 3003–3010, 1986.

    Google Scholar 

  61. Deininger P.L. and Batzer M.A., Evol Biol27 157–196, 1993.

    Google Scholar 

  62. Ono M., Kawakami M., and Takezawa T., Nucleic Acids Res15 8725–8731, 1987.

    Google Scholar 

  63. Coffin J. in Weiss R., Teich N., Varmus H., and Coffin J. (eds).RNA Tumour Viruses 2nd ed., Vol. 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1984, pp. 1109–1203.

    Google Scholar 

  64. Larsson E., Nilsson O.B., Sundstrom P., and Widehn S., Int J Cancer18 551–556, 1981.

    Google Scholar 

  65. Mondal H. and Hofschneider P.H., Int J Cancer30 281–287, 1982.

    Google Scholar 

  66. Lyden T.W., Johnson P.M., Mwenda J.M., and Rote N.S., Biol Reprod51 152–157, 1994.

    Google Scholar 

  67. Moore D.H., Charney J., Kramarsky B., Lasfargues E.Y., Sarkar N.H., Brennan M.J., Burrows J.H., Sirsat S.M., Paymaster J.C., and Vaidya A.B., Nature229 611–615, 1971.

    Google Scholar 

  68. Al-Sumidaie A.M., Leinster S.J., Hart C.A., Green C.D., and McCarthy K., Lancet1 5–9, 1988.

    Google Scholar 

  69. Löwer J., Wondrak E.M., and Kurth R., J Gen Virol68 2807–2815, 1987.

    Google Scholar 

  70. Weiss R, in Weiss R., Teich N., Vermus H., and Coffin J. (eds).RNA Tumour Viruses, 2nd ed., Vol. 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1984, pp. 1205–1281.

    Google Scholar 

  71. Keydar I., Ohno T., Nayak R., Sweet R., Simoni F., Weiss F., Karby S., Mesa-Tejada R., and Spiegelman S., Proc Natl Acad Sci USA81 4188–4192, 1984.

    Google Scholar 

  72. Garry R.F., Fermin C.D., Hart D.J., Alexander S.S., Donehower L.A., and Lou-Zhang H., Science250 1127–1129, 1990.

    Google Scholar 

  73. Gupta S., Ribak C.E., Gollapudi S., Kim C.H., and Salahuddin S.Z., Proc Natl Acad Sci USA89 7831–7835, 1992.

    Google Scholar 

  74. Seifarth W., Skladny H., Kreig-Schneider F.-K., Reichert A., Hehlmann R., and Leib-Mösch C., J Virol69 6408–6416, 1995.

    Google Scholar 

  75. Sherwin S.A., Rapp U.R., Benveniste R.E., Sen A., and Todaro G.J., J Virol25 257–264, 1975.

    Google Scholar 

  76. Scolnick E.M., Vass W.C., Howk R.S., and Duesberg P.H., J Virol29 964–972, 1979.

    Google Scholar 

  77. Hatzoglou M., Hodgson C.P., Mularo F., and Hanson R.W., Hum Gene Ther1, 385–397.

  78. Leib-Mösch C., Bachmann M., Brack-Werner R., Werner T., Erfle V., and Hehlmann R., Leukemia6 72–75, 1992.

    Google Scholar 

  79. Garfinkel D.J. in Levy J. (ed).The Retroviridae, Vol 1. Plenum Press, New York, 1992, pp. 107–158.

    Google Scholar 

  80. Mager D.L. and Goodchild N.L., Am J Hum Genet45 848–854, 1989.

    Google Scholar 

  81. Goodchild N.L., Wilkinson D.A., and Mager D.L., Virology196 778–788, 1993.

    Google Scholar 

  82. Haltmeier M., Seifarth W., Blusch J., Erfle V., Hehlmann R., and Leib-Mösch C., Virology209 550–560, 1995.

    Google Scholar 

  83. Tchenio T. and Heidmann T., J Virol65 2113–2118, 1991.

    Google Scholar 

  84. Telesnitsky A. and Goff S.P., EMBO J12 4433–4438, 1993.

    Google Scholar 

  85. Swergold G.D., Mol Cell Biol10 6718–6724, 1990.

    Google Scholar 

  86. Goodchild N.L., Freeman, D.J., and Mager D.L., Virology206 164–173, 1994.

    Google Scholar 

  87. Deininger P.L., Batzer M.A., Hutchison C.A. III, and Edgell M.H., Trends Genet8 307–311, 1992.

    Google Scholar 

  88. Silver J., Rabson A., Bryan T., Willey R., and Martin M.A., Mol Cell Biol7 1559–1562, 1987.

    Google Scholar 

  89. Craigie R., Trends Genet8 187–190, 1992.

    Google Scholar 

  90. Korenberg J.R. and Rykowski M.C., Cell53 391–400, 1988.

    Google Scholar 

  91. Taruscio D, and Manuelidis L., Chromosoma101, 141–156.

  92. Maeda N. and Kim H.-S., Genomics8 671–683, 1990.

    Google Scholar 

  93. Fraser C., Humphries K., and Mager D.L., Genomics2 280–287, 1988.

    Google Scholar 

  94. Nakamura N., Sugino H., Takahara K., Jin C., Fukushinge S., and Matsubara K., Cytogenet Cell Genet57 18–22, 1991.

    Google Scholar 

  95. Sugino H., Oshimura M., and Matsubara K., Genomics13 461–467, 1992.

    Google Scholar 

  96. Temin H.M., Cell21 599–606, 1980.

    Google Scholar 

  97. Baltimore D., Cell40 481–488, 1985.

    Google Scholar 

  98. Doolittle R.F., Feng D.F., Johnson M.S., and McClure M.A., Q Rev Biol64 1–30, 1989.

    Google Scholar 

  99. Xiong Y. and Eickbush T.H., EMBO J9 3353–3362, 1990.

    Google Scholar 

  100. Temin H.M. in (Levy J.A. (ed). The Retroviridae, Vol 1. Plenum Press, New York, 1992, pp. 1–18.

    Google Scholar 

  101. McClure M.A. in Skalka A.M. and Goff S.P. (eds).Reverse Transcriptase. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY, 1993, pp. 103–124.

    Google Scholar 

  102. Repaske R., Steele P., O'Neill R., Rabson A., Brian T., and Martin M., J Virol54 764–772, 1985.

    Google Scholar 

  103. Mariani-Constantini R., Horn T.M., and Callahan R., J Virol63 4982–4985, 1989.

    Google Scholar 

  104. Johansen T., Holm T., and Bjørklid E., Gene79 259–267, 1989.

    Google Scholar 

  105. Schmid C.W., Wong E.F.K., and Deka N., J Mol Evol31 92–100, 1990.

    Google Scholar 

  106. Shih A., Coutavas E.E., and Rush M.G., Virology182 495–502, 1991.

    Google Scholar 

  107. Mager D. and Freeman, J.D., Virology213 395–404, 1995.

    Google Scholar 

  108. Renan M.J. and Reeves B.R., Cytogenet Cell Genet44 167–170, 1987.

    Google Scholar 

  109. Brack-Werner R., Barton D.E., Werner T., Foellmer B.E., Leib-Mösch C., Francke U., Erfle V., and Hehlmann R., Genomics4 68–75, 1989.

    Google Scholar 

  110. Perl A., Isaacs C.M., Eddy R.L., Byers M.G., Sait S.N.J., and Shows T.B., Genomics11 1172–1173, 1991.

    Google Scholar 

  111. Dangel A.W., Mendoza A.R., Baker B.J., Daniel C.M., Carroll M.C., Wu L.-C., and Yu C.Y., Immunogenetics40 425–436, 1994.

    Google Scholar 

  112. Svensson A.-C., Setterblad N., Sigurdardottir S., Rask L., and Andersson G., Immunogenetics41 74–82, 1995.

    Google Scholar 

  113. Pizzuti A., Pieretti M., Fenwick R., Gibbs R., and Caskey C., Genomics13 594–599, 1992.

    Google Scholar 

  114. McNaughton J.C., Broom J.E., Hill D.F., Jones W.A., Marshall C.J., Renwick N.W., Stockwell P.A., and Petersen G.B., J Mol Biol232 314–321, 1993.

    Google Scholar 

  115. Francis M.J., Nesbit M.A., Theodosiou A.M., Rodrigues N.R., Campbell L., Christodoulou Z., Qureshi S.J., Porteous D.J., Brookes A.J., and Davies K.E., Genomics27 366–369, 1995.

    Google Scholar 

  116. Lehrman M.A., Goldstein J.L., Russell D.W., and Brown M.S., Cell48 827–835, 1987.

    Google Scholar 

  117. Stoppa-Lyonnet D., Carter P.E., Meo T., and Tosi M., Proc Natl Acad Sci USA87 1551–1555, 1990.

    Google Scholar 

  118. Barsh G.S., Seeburg P., and Gelinas R.E., Nucleic Acids Res11 3939–3956, 1983.

    Google Scholar 

  119. Fitch D.H.A., Bailey W.J., Tagle D.A., Goodman M., Sieu L., and Slightom J.L., Proc Natl Acad Sci USA88 7369–7400, 1991.

    Google Scholar 

  120. Favor J. and Morawetz C., Mutat Res284 53–74, 1992.

    Google Scholar 

  121. Liu A.Y. and Abraham B.A., Cancer Res51 4107–4110, 1991.

    Google Scholar 

  122. Feuchter A.E., Freeman J.D., and Mager D.L., Genomics13 1237–1246, 1992.

    Google Scholar 

  123. Goodchild N.L., Wilkinson D.A., and Mager D.L., Gene121 287–294, 1992.

    Google Scholar 

  124. Feuchter-Murthy A.E., Freeman J.D., and Mager D.L., Nucleic Acids Res21 135–143, 1993.

    Google Scholar 

  125. Di Christofano A., Strazzullo M., Longo L., and La Mantia G., Nucleic Acids Res23 2823–2830, 1995.

    Google Scholar 

  126. Kato N., Shimotohno K., VanLeeuwen D., and Cohen M., Mol Cell Biol10 4401–4405, 1990.

    Google Scholar 

  127. Mager D.L., Nelson D.T., Kowalski P.E., Baban S., and Freeman J.D., J Cancer Res Clin Oncol121(Suppl 1), S7, 1995.

  128. Ting C.-N., Rosenberg M.P., Snow C.M., Samuelson L.C., and Meisler M.H., Genes Dev6 1457–1465, 1992.

    Google Scholar 

  129. Kazazian H.H., Wong C., Youssoufian H., Scott A.F., Phillips D.G., and Antonarakis S.E., Nature332 164–166, 1988.

    Google Scholar 

  130. Morse B., Rothberg P.G., South V.J., Spandorfer J.M., and Astrin S.M., Nature333 87–90, 1988.

    Google Scholar 

  131. Miki Y., Nishisho I., Horii A., Miyoshi Y., Utsunomiya J., Kinzler K., Vogelstein B., and Nakamura Y., Cancer Res52 643–649, 1992.

    Google Scholar 

  132. Narita N., Nishio H., Kotoh Y., Ishikawa Y., Minami R., Nakamura H., and Matsuo Y., J Clin Invest91 1862–1867, 1993.

    Google Scholar 

  133. Holmes S., Dombroski B.A., Krebs C.M., Boehm C.D., and Kazazian H.H., Nature Genet7 143–148, 1994.

    Google Scholar 

  134. Mitchell G.A., Labuda D., Fontaine G., Saudubray J.M., Bonnefont J.P., Lyonnet S., Brody L.C., Steel G., Obie C., and Valle D., Proc Natl Acad Sci USA88 815–819, 1991.

    Google Scholar 

  135. Muratani K., Hada T., Yamamoto Y., Kaneko T., Shigeto Y., Ohue T., Furuyama J., and Higashino K., Proc Natl Acad Sci USA88 11315–11319, 1991.

    Google Scholar 

  136. Wallace M.R., Anderson L.B., Saulino A.M., Gregory P.E., Glover T.W., and Collins F.S., Nature353 864–866, 1991.

    Google Scholar 

  137. Vidaud D., Vidaud M., Bahnak B.R., Siduret V., Sanchez S.G., Laurian Y., Meyer D., Goossens M., and Lavergne J.M., Eur J Hum Genet1 30–36, 1993.

    Google Scholar 

  138. Cianciolo G.J., Phipps D., and Snyderman R., J Exp Med159 964–969, 1984.

    Google Scholar 

  139. Query C.C., and Keene J.D., Cell51 211–220, 1987.

    Google Scholar 

  140. Banki K., Colombo E., Sia F., Halladay D., Mattson D.H., Tatum A.H., Massa P.T., Phillips P.E., and Perl A. J Exp Med180 1649–1663, 1994.

    Google Scholar 

  141. Krieg A.M. and Steinberg A.D., J Autoimmun3 137–166, 1990.

    Google Scholar 

  142. Kreig A.M., Gourley M.F., and Perl A., FASEB J6 2537–2544, 1992.

    Google Scholar 

  143. Perl A. and Banki K., Trends Micobiol1 153–156, 1993.

    Google Scholar 

  144. Gardner M.B., and Kozak C.A., Trends Genet7 22–27, 1991.

    Google Scholar 

  145. Werner T., Brack-Werner R., Leib-Mösch C., Backhaus H., Erfle V., and Hehlmann R., Virology174 225–238, 1990.

    Google Scholar 

  146. La Mantia G., Pengue G., Maglione D., Pannuti A., Pascucci A., and Lania L., Nucleic Acids Res17 5913–5922, 1989.

    Google Scholar 

  147. Shih A., Misra R., and Rush M.G., J Virol63 64–75, 1989.

    Google Scholar 

  148. Tamura T.A., J Virol47 137–145, 1983.

    Google Scholar 

  149. Delassus S., Songio P., and Wain-Hobson S. Virology173 205–213, 1989.

    Google Scholar 

  150. Etzerodt M., Mikkelsen T., Pedersen F.S., and Kjeldgaard N.O., Virology134 196–207, 1984.

    Google Scholar 

  151. Shinnik T.M., Lerner A.R., and Scutcliffe J.G., Nature293 543–548, 1981.

    Google Scholar 

  152. Moore R., Dixon M., Smith R., Peters G., and Dickson C., J Virol61 480–490, 1987.

    Google Scholar 

  153. Ono M., Toh, H., Miyata T., and Awaya T., J Virol55 387–394, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Leib-Mösch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leib-Mösch, C., Seifarth, W. Evolution and biological significance of human retroelements. Virus Genes 11, 133–145 (1995). https://doi.org/10.1007/BF01728654

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01728654

Key words

Navigation