Skip to main content
Log in

Approximation and decomposition properties of some classes of locally D.C. functions

  • Published:
Mathematical Programming Submit manuscript

Abstract

We study the connexion between local and global decompositions of some important subclasses of locally d.c. functions (functions which locally split as a difference of two convex functions). Then we tackle the problem of regularizing such functions by the Moreau-Yosida process and prove in particular that the class of lower-C 2 functions fits well this approximation procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Asplund, “Fréchet differentiability of convex functions,”Acta Mathematica 121 (1968) 31–47.

    Google Scholar 

  2. H. Attouch,Variational Convergence for Functions and Operators, Applicable Mathematics Series (Pitman, London, 1984)).

    Google Scholar 

  3. H. Attouch, “Variational properties of epiconvergence. Application to limit analysis problems in mechanics and duality theory,” in: G. Salinetti, ed.Multifunctions and Integrands, Lecture Notes in Mathematics 1091 (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  4. J. Baranger, “Existence de solutions pour des problèmes d'optimisation non convexes,”Journal de Mathématiques Pures et Appliquées 52 (1973) 377–406.

    Google Scholar 

  5. J. Baranger and R. Temam: “Nonconvex optimization problems depending on a parameter,”SIAM Journal on Control 13 (1975) 146–152.

    Google Scholar 

  6. D.P. Bertsekas, “Convexification procedures and decomposition methods for nonconvex optimization problems,”Journal of Optimization Theory and Applications 29 (1979) 169–197.

    Google Scholar 

  7. M. Bougeard, “Contribution à la Théorie de Morse en dimension finie,” Thése troisième cycle, University Paris-IX-Dauphine (Paris, 1978).

    Google Scholar 

  8. M. Bougeard, “Contribution à la Théorie de Morse,” Cahier Ceremade, University Paris-Dauphine (Paris, 1979).

    Google Scholar 

  9. M.L. Bougeard, “About critical points of some lowerC 2 functions“ in: C. Lemarechal, ed.,Third Franco-German Conference in Optimization (I.N.R.I.A., 78153 Le Chesnay, France, 1984) pp. 12–16.

    Google Scholar 

  10. H. Brezis,Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, Mathematics Studies 5 (North-Holland, Amsterdam, 1973).

    Google Scholar 

  11. C. Castaing and M. Valadier,Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580 (Springer-Verlag, Berlin, 1977).

    Google Scholar 

  12. F.H. Clarke,Optimization and Nonsmooth Analysis (Wiley, New York, 1983).

    Google Scholar 

  13. B. Cornet, Contribution à la théorie mathématique des mécanismes dynamiques d'allocation des ressources, Thèse d'Etat, University Paris IX (1981).

  14. I. Ekeland and J.-M. Lasry, “On the number of periodic trajectories for a hamiltonian flow,”Annals of Mathematics 112 (1980) 293–319.

    Google Scholar 

  15. I. Ekeland, and J.-M. Lasry, “Problèmes variationnels non convexes en dualité,”Comptes rendus de l'Académie des Sciences de Paris A 291 (1980) 493–496.

    Google Scholar 

  16. I. Ekeland, and G. Lebourg, “Generic Fréchet differentiability and pertubed optimization problems in Banach spaces,”Transactions American Mathematical Society 224 (4) (1976) 193–216.

    Google Scholar 

  17. I. Ekeland, and R. Temam,Analyse Convexe et Problèmes Variationnels (Dunod, Gauthier-Villars, Paris, 1972 (English translation: North-Holland, Amsterdam, American Elsevier, New York, 1976).

    Google Scholar 

  18. R. Ellaia, Contribution à l'analyse et l'optimisation de différence de fonctions convexes, Thèse de troisiéme cycle, University of Toulouse (1984).

  19. A. Fougeres, and A. Truffert, “Régularisation s.c.i. et Γ-convergence. Approximations inf-convolutives associées à un référentiel” (version augmentée), Publications AVAMAC, University of Perpignan 84–08/15 (1984).

  20. P. Hartman, “On functions representable as a difference of convex functions,”Pacific Journal of Mathematics 9 (1959) 707–713.

    Google Scholar 

  21. J.-B. Hiriart-Urruty, “Extension of Lipschitz functions.“Journal of Mathematical Analysis and Applications 77 (2) (1980) 539–554.

    Google Scholar 

  22. J.-B. Hiriart-Urruty, “Generalized differentiability, duality and optimization for problems dealing with differences of convex functions,” Written version of a lecture given in Groningen, Preprint University of Toulouse (1984).

  23. H. Holmes, “Smoothness of certain metric projections in Hilbert spaces,”Transactions of the American Mathematical Society 183 (1973) 87–100.

    Google Scholar 

  24. R. Janin, “Sur la dualité et la sensibilité dans les problèmes de programmes mathématiques,” Thèse d'Etat, Paris VI (1974).

    Google Scholar 

  25. H. Th. Jongen, P. Jonker and F. Twilt,Nonlinear Optimization inn (book to appear).

  26. W.A. Kirk, “Caristi's fixed point theorem and metric convexity,”Colloquium Mathematicum 36 (1976) 81–86.

    Google Scholar 

  27. B. Lacolle, “Un procédé d'approximation d'une fonction convexe lipschitzienne et de ses singularités,” Preprint, University of Grenoble (1984).

  28. J.-M. Lasry and P.-L. Lions,Remark on regularization in Hilbert spaces, Cahier Ceremade no. 8414, University Paris-Dauphine (1984).

  29. C. Lescarret, “Application “prox” dans un espace de Banach,”Comptes rendus Académie des Sciences Paris 265 (1967) 676–678.

    Google Scholar 

  30. C. Malivert, “Méthode de descente sur un fermé non convexe,”Bulletin Société Mathématique de France Mémoire 60 (1979) 113–124.

    Google Scholar 

  31. C. Malivert, J.-P. Penot and M. Thera, “Minimisation d'une fonction régulière sur un fermé régulier non convexe,”Comptes Rendus de l'Académie des Sciences Paris A (1978) 1191–1193.

  32. J.-J. Moreau, “Proximité et dualité dans un espace hilbertien,”Bulletin de la Sociéte Mathématique de France 93 (1965) 273–299.

    Google Scholar 

  33. J.-J. Moreau, “Fonctionnelles convexes,” Séminaire sur les Equations aux Dérivées partielles, Collége de France, Paris (1967).

    Google Scholar 

  34. P. Michel, “Problèmes des inégalités; applications à la programmation et au contrôle optimal,”Bulletin Société Mathématique de France 101 (1973) 413–439.

    Google Scholar 

  35. A. Pazy, “Semi-groups of nonlinear contractions in Hilbert spaces,” in:Problems in Non-linear Analysis, (Centro Italiano Matematico Estivo IV ciclo, Varenna, 1970; Cremonese, Rome, 1971), 343–430.

    Google Scholar 

  36. J.-P. Penot, “Sous-différentiels de fonctions numériques non convexes,”Comptes rendus de l'Académie des Sciences Paris A 278 (1974) 1153–1155.

    Google Scholar 

  37. J.-P. Penot, “Penalization and regularization methods in nonsmooth analysis,” Unpublished Lecture, Journées d'Optimisation de Louvain, Louvain (1983).

    Google Scholar 

  38. J.-P. Penot, “Modified and augmented Lagrangian theory revisited and augmented,” Lecture in Journées Fermat de Toulouse, France, May 1985.

    Google Scholar 

  39. J.-P. Penot, “On favorable classes of mappings in nonlinear analysis and optimization,” Preprint, University of Pau (1985).

  40. A. Pommelet, “Analyse convexe et théorie de Morse,” Thèse troisième cycle, University Paris IX (1982).

  41. B.N. Pshenichnyii,Necessary Conditions for an Extremum (M. Dekker, New York, 1971).

    Google Scholar 

  42. A. Ralambo, “Problèmes de minimisation dans les espaces de Banach,” Thèse troisième cycle, University Paris VI (June 1985).

  43. R.T. Rockafellar, “Augmented Lagrange multiplier functions and duality in nonconvex programming,”SIAM Journal on Control 12 (1974) 268–285.

    Google Scholar 

  44. R.T. Rockafellar: “Favorable classes of Lipschitz continuous functions in subgradient optimization,” in: E. Nurminski, ed.,Progress in Nondifferentiable Optimization (IIASA, Laxenburg, Austria, 1982) pp. 125–143.

    Google Scholar 

  45. R.T. Rockafellar, R.J.-B. Wets, “Variational systems, an introduction,” in: G. Salinetti, ed.,Multifunctions and Integrands, Lecture Notes in Mathematics 1091, (Springer-Verlag 1984) pp. 1–54.

  46. J.E. Spingarn, “Submonotone subdifferentials of Lipschitz functions,”Transactions of the American Mathematical Society 264 (1981) 77–89.

    Google Scholar 

  47. J.E. Spingarn, “Submonotone mappings and the proximal algorithm,”Numerical Functional Analysis and Optimization 4 (2) (1981/1982) 123–150.

    Google Scholar 

  48. J.P. Vial, “Strong and weak convexity of sets and functions,”Mathematics of Operations Research 8 (1983) 231–257.

    Google Scholar 

  49. R. Wets, “Convergence of convex functions, variational inequalities and convex optimization problems,” in: Cottle et al., eds.,Variational Inequalities and Complementary Problems (Wiley, Chichester, 1980)).

    Google Scholar 

  50. D. Wexler, “Prox-mappings associated with a pair of Legendre conjugate functions,”Revue francaise d'Automatique, Informatique, Recherche Opérationnelle R2 (1972) 39–65.

    Google Scholar 

  51. Y. Yomdin, “On functions representable as a supremum of smooth functions,”S.I.A.M. Journal of Mathematical Analysis 14 (1983) 239–246.

    Google Scholar 

  52. Y. Yomdin, A. Shapiro, “On functions representable as a difference of two convex functions and necessary conditions in constrained optimization,” preprint, University Neger Beer-Sheva (Israel, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penot, J.P., Bougeard, M.L. Approximation and decomposition properties of some classes of locally D.C. functions. Mathematical Programming 41, 195–227 (1988). https://doi.org/10.1007/BF01580764

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01580764

Key words

Navigation