Skip to main content
Log in

Cell cycle-dependent repair of double-strand DNA breaks in a γ-ray-sensitive Chinese hamster cell

  • Published:
Somatic Cell and Molecular Genetics

Abstract

A Chinese hamster cell mutant has been isolated which is extremely sensitive to killing by γ-irradiation in the G1, and early S phases of the cell cycle (LD50 of 20 vs. 250 rads for parent), but which has nearly normal resistance in late S. The mutant cell is able to repair single-stranded DNA breaks introduced by γ-radiation. However, in comparison to its parental cell, the mutant is deficient in the repair of double-stranded DNA breaks produced by γ-irradiation during the sensitive G1-early S period, while in the resistant late S period, the repair is nearly the same for both cell types. This correlation between γ-ray sensitivity and repair strongly suggests that an inability to repair double-strand DNA breaks in G1 is the basis for the hypersensitivity of the mutant to killing by γ-rays in this phase of the cell cycle. It also provides direct evidence in mammalian cells that the ability to repair double-strand DNA breaks induced by ionizing radiation is an important biochemical function in cell survival and supports the hypothesis that unrepaired double-strand breaks are a major lethal lesion in mammalian cells. A plausible explanation for the appearance of the cell cycle phenotype of the mutant is that in normal cells there are at least two pathways for the repair of double-strand breaks, one of which functions primarily in late S phase, and the other, either throughout the cell cycle or only in the G1 and early S phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  1. Cerutti, P.A. (1974).Naturwissenschaften 61:51–59.

    PubMed  Google Scholar 

  2. Paterson, M.C., and Smith, P.J. (1979).Annu. Rev. Genet. 13:291–318.

    PubMed  Google Scholar 

  3. Friedberg, E.C., Ehmann, U.R., and Williams, J.I. (1979).Adv. Radiat. Biol. 8:85–174.

    Google Scholar 

  4. Houldsworth, J., and Levin, M.F. (1980).Nucleic Acids Res. 8:3709–3720.

    PubMed  Google Scholar 

  5. Painter, R.B., and Young, B.R. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:7315–7317.

    PubMed  Google Scholar 

  6. Jaspars, N.G.J., and Bootsma, D. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:2641–2644.

    PubMed  Google Scholar 

  7. Murnane, J.P., and Painter, R.B. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:1960–1963.

    PubMed  Google Scholar 

  8. Stamato, T.D., Weinstein, R., Giaccia, A., and Mackenzie, L. (1983).Somat. Cell Genet. 9:165–173.

    PubMed  Google Scholar 

  9. Jeggo, P.A., and Kemp, L.M. (1983).Mutat. Res. 112:313–327.

    PubMed  Google Scholar 

  10. Kao, F.T., Chasin, L., and Puck, T.T. (1969).Proc. Natl. Acad. Sci. U.S.A. 64:1284–1291.

    PubMed  Google Scholar 

  11. Chen, T.C. (1976).TCA Manual 1:229–232.

    Google Scholar 

  12. McGarrity, G. (1976).TCA Manual 1:113–116.

    Google Scholar 

  13. Kohn, K.W., Ewig, R.A.G., Erickson, L.C., and Zwelling, L.A. (1981). InDNA Repair, A Laboratory Manual of Research Procedures, (eds.) Friedberg, E.C., and Hanawalt, P.C. (Marcel Dekker, New York), pp. 379–401.

    Google Scholar 

  14. Bradley, M.O., and Kohn, K.W. (1979).Nucleic Acids Res. 7:793–804.

    PubMed  Google Scholar 

  15. Hutchinson, F. (1975). InMolecular Mechanisms for Repair of DNA, (eds.) Hanawalt, P., and Setlow, R.B. (Plenum Press, New York), Part B, pp. 699–702.

    Google Scholar 

  16. Kemp, L.M., Sedgewick, S.G., and Jeggo, P.A. (1984).Mutat. Res. 132:189–196.

    PubMed  Google Scholar 

  17. Terasima, T., and Tolmach, L.J. (1963).Science 140:490–492.

    PubMed  Google Scholar 

  18. Sinclair, W.K., Morton, R.A. (1966).Radiat. Res. 29:450–474.

    PubMed  Google Scholar 

  19. Brunborg, G., and Williamson, D.H. (1978).Mol. Gen. Genet. 162:277–286.

    PubMed  Google Scholar 

  20. Brunborg, G., Resnick, M.A., and Williamson, D.H. (1980).Radiat. Res. 82:547–558.

    PubMed  Google Scholar 

  21. Resnick, M.A. (1978). InDNA Repair Mechanisms, (eds.) Hanawalt, P.C., Friedberg, E.C., and Fox, C.F. (Academic Press, New York), pp. 417–420.

    Google Scholar 

  22. Prakash, S., Prakash, L., Burke, W., and Montelonc, B.A. (1980).Genetics 91:31–50.

    Google Scholar 

  23. Resnick, M.A. (1975). InMolecular Mechanisms for Repair of DNA, (eds.) Hanawalt, P.C., and Setlow, R.B. (Plenum Press, New York), Part B, pp. 549–556.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giaccia, A., Weinstein, R., Hu, J. et al. Cell cycle-dependent repair of double-strand DNA breaks in a γ-ray-sensitive Chinese hamster cell. Somat Cell Mol Genet 11, 485–491 (1985). https://doi.org/10.1007/BF01534842

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534842

Keywords

Navigation