Skip to main content
Log in

Nonlinear dynamics of epileptic seizures on basis of intracranial EEG recordings

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

Purpose: An understanding of the principles governing the behavior of complex neuronal networks, in particular their capability of generating epileptic seizures implies the characterization of the conditions under which a transition from the interictal to the ictal state takes place. Signal analysis methods derived from the theory of nonlinear dynamics provide new tools to characterize the behavior of such networks, and are particularly relevant for the analysis of epileptiform activity.Methods: We calculated the correlation dimension, tested for irreversibility, and made recurrence plots of EEG signals recorded intracranially both during interictal and ictal states in temporal lobe epilepsy patients who were surgical candidates.Results: Epileptic seizure activity often, but not always, emerges as a low-dimensional oscillation. In general, the seizure behaves as a nonstationary phenomenon during which both phases of low and high complexity may occur. Nevertheless a low dimension may be found mainly in the zone of ictal onset and nearby structures. Both the zone of ictal onset and the pattern of propagation of seizure activity in the brain could be identified using this type of analysis. Furthermore, the results obtained were in close agreement with visual inspection of the EEG records.Conclusions: Application of these mathematical tools provides novel insights into the spatio-temporal dynamics of “epileptic brain states”. In this way it may be of practical use in the localization of an epileptogenic region in the brain, and thus be of assistance in the presurgical evaluation of patients with localization-related epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADC:

analog to digital converter

CPS:

complex partial seizure

ECoG:

electro corticogram

EEG:

electroencephalogram

FIR:

finite impulse response (filter)

LGRP:

linear Gaussian random process

log:

logarithm with base 10

MTLE:

mesial temporal lobe epilepsy

PCM:

pulse code modulation

SCECoG:

subchonic electro corticogram

SEEG:

stereoelectroencephalogram

TLE:

temporal lobe epilepsy

QEEG:

quantitative EEG (analysis)

ATL, ATR:

anterior temporal left,-right

MTL, MTR:

mid temporal left,-right

PTL, PTR:

posterior temporal left,-right

AML, AMR:

amygdala left,-right

HCL, HCR:

hippocampus left,-right

G1:

input amplifiers common reference electrode

G2:

current-source electrode for compensating potential changes of G1

i:

interictal

P:

pre-ictal

S:

seizure

C(r,m) :

correlation integral

D2 :

correlation dimension

h :

Heaviside or step function

d :

distance between two vectors (maximum norm)

k :

largest delay

K 2 :

correlation entropy

log:

logarithm with base 10

m :

embedding dimension

N :

number of (reconstructed) vectors in phase space

ν :

sampling frequency

T :

time-window for the ‘Theiler correction’

r :

radius of a sphere in phase space

\(\vec V_m (i)\) :

(reconstructed) vector in m-dimensional phase space

W,T :

number of samples and time span of the window for the “Theiler correction”

x i :

samplei of the time series

t :

time

x,\(\dot x, \ddot x\) :

position, velocity and acceleration of the beam

δ:

friction coefficient

γ:

amplitude of the driving force

ω:

angular frequency of the driving force

References

  • Achermann, P., Hartmann, R., Gunzinger, A., Guggenbuhl, W. and Borbély, A.A. All-night sleep EEG and artificial stochastic control signals have similar correlation dimensions. Electroenceph. clin. Neurophysiol., 1994, 90: 384–387.

    Google Scholar 

  • Albano, A.M., Muench, J., Schwartz, C, Mees, A.I., and Rapp, P.E. Singular-value decomposition and the Grassberger-Procaccia algorithm. Phys. Rev. A 1988, 38, 3017–3026.

    Google Scholar 

  • Babloyantz, A. and Destexhe, A. Low dimensional chaos in an instance of epilepsy. Proc. Nat. Acad. Sci. (USA), 1986, a3: 3513–3517.

    Google Scholar 

  • Blinowska, K.J. and Malinowski, M. Non-linear and linear forecasting of the EEG time series. Biol. Cybern., 1991, 66: 159–165.

    Google Scholar 

  • Brekelmans, G.J.F., van Emde Boas, W., Velis, D.N., van Huffelen, A.C., Debets, R.M.Chr. and van Veelen, C.W.M. Mesial temporal versus neocortical temporal lobe seizures: demonstration of different electroencephalographic spreading patterns by combined use of subdural and intracerebral electrodes. J. Epilepsy, 1995, 8: 308–320.

    Google Scholar 

  • Cerf, R., Ouldénoune, M., Ben Maati, M.L., El Ousdad, E.H.and Daoudi, A. Wave-separation in complex systems. Application to brain-signals. J. of Biol. Phys., 1994, 19: 223–233.

    Google Scholar 

  • Delmas, A. and Pertuiset, B. Cranio-cerebral topometry in man. Paris, Masson, and Oxford, Blackwell Scientific Publications. 1959.

    Google Scholar 

  • Diks, C, van Houwelingen, J.C., Takens, F. and DeGoede, J. Reversibility as a criterion for discriminating time series. Phys. Lett. A, 1995, 201: 221–228.

    Google Scholar 

  • Eckmann, J.P., Oliffson Kamphorst, S. and Ruelle, D. Recurrence plots of dynamical systems. Europhys. Lett., 1987, 4(9): 973–977.

    Google Scholar 

  • Elbert, T., Ray, W.J., Kowalik, Z.J., Skinner, J.E., Graf, K.E. and Birbaumer, N. Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiol Rev, 1994, 74(1): 1–47.

    Google Scholar 

  • Frank, G.W., Lookman, T., Nerengerg, M.A.H., Essex, C., Lemieux, J. and Blume, W. Chaotic time series analyses of epileptic seizures. Physica D, 1990, 46: 427–438.

    Google Scholar 

  • Fraser, A.M. and Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev., 1986, 33A: 1134–1140.

    Google Scholar 

  • Freeman, W.J.. Societies of Brains: A Study in the Neuroscience of Love and Hate. Lawr. Erlb. Assoc.Publ., Hillsdale, New Jersey, 1995.

    Google Scholar 

  • Gotman, J. Automatic recognition of epileptic seizures in the EEG. Electroenceph. clin. Neurophysiol., 1982, 54: 530–540.

    Google Scholar 

  • Gotman, J. Automatic seizures detection: improvements and evaluation. Electroenceph. clin. Neurophysiol., 1990, 54: 530–540.

    Google Scholar 

  • Grassberger, P. and Procaccia, I. Measuring the strangeness of strange attractors. Physica D, 1983, 9: 189–208.

    Google Scholar 

  • Grassberger, P., Hegger, R., Kantz, H., Schaffrath, C. and Schreiber, Th. On noise reduction methods for chaotic data. Chaos, 1993, 3: 127–141.

    Google Scholar 

  • Guckenheimer, J. and Holmes, P. Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, Heidelberg, 1983.

    Google Scholar 

  • Hammel, S.M. A noise reduction method for chaotic systems. Phys. Lett., A., 1990, 160: 421–428.

    Google Scholar 

  • Havstad, J.W. and Ehlers, C.L. Attractor dimension of nonstationary dynamical systems from small data sets. Physical Review A, 1989, 39: 845–853.

    Google Scholar 

  • Hayashi, H. and Ishizuka, S. Chaotic responses of the hippocampal CA3 region to a mossy fiber stimulation in vitro. Brain Res., 1995, 686(2): 194–206.

    Google Scholar 

  • Hernández, J.L., Valdés, J.L., Biscay, R., Jiménez, J.C. and Valdés, P. EEG predictability: properness of non-linear forecasting methods. Int. J. Bio-Med. Comp., 1995, 38: 197–206.

    Google Scholar 

  • van der Heyden, M.J., Diks, C, Pijn, J.P.M. and Velis, D.N. Time reversibility of intracranial human EEG recordings in temporal lobe epilepsy. Phys.Lett.A, 1996, 216: 283–288.

    Google Scholar 

  • Iasemidis, L.D., Sackellares, J.C, Zaveri, H.P. and Williams, W.J. Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures. Brain Topogr., 1990, 2: 187–201.

    Google Scholar 

  • Iasemidis, L.D., Barreto, A., Uthman, B.M., Roper, S., Sackellares, I.C.. Spatio temporal evolution of dynamical measures precedes onset of mesial temporal lobe seizures. Epilepsia, 1994, 35 (Suppl. 8): 133.

    Google Scholar 

  • Iasemidis, L.D., Principe, J.C, Czaplewski, J.M., Gilmore, R.L., Roper, S.N. and Sackellares, I.C. Spatiotemporal transition to epileptic seizures: a nonlinear dynamical analysis of scalp and intracranial EEG recordings. In: F.L. Silva, J.C. Principe and L.B. Almeida (Ed.), Spatiotemporal Models in Biological and Artificial Systems. IOS Press, Amsterdam, 1996: 81–88.

    Google Scholar 

  • Ishizuka, S. and Hayashi, H. Chaotic and phase-locked responses of the somatosensory cortex to a periodic medial lemniscus stimulation in the anesthetized rat. Brain Res., 1996, 723: 46–60.

    Google Scholar 

  • Kaboudan MA, 1993. A complexity test based on the correlation integral. Phys. Lett. A 181: 381–386.

    Google Scholar 

  • Kantz H and Schreiber T. Dimension estimates and physiological data. Chaos, 1995, 5 (1): 143–154.

    Google Scholar 

  • Kaplan, D.T. and Glass, L. Direct test for deterministism in a time series. Phys. Rev. letters, 1992, 68: 427–430.

    Google Scholar 

  • Lehnertz, K and Elger, C.E. Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroenceph. clin. Neurophysiol., 1995, 95: 108–117.

    Google Scholar 

  • Lieb, J.P., Dasheiff, R.M. and Engel Jr, J. Role of the frontal lobes in the propagation of mesial temporal lobe seizures. Epilepsia, 1991, 32(6): 822–837.

    Google Scholar 

  • Lopes da Silva, F.H., Witter, M.P., Boeijinga, P.H. and Lohman, A.H.M. Anatomic organization and physiology of the limbic cortex. Phys. Rev., 1990, 70(2): 453–511.

    Google Scholar 

  • Lopes da Silva, F.H. and Pijn, J.P.M. Epilepsy: network models of generation. In: M. A. Arbib (Ed.), The Handbook of Brain Theory and Neural Networks. The MIT Press, Massachusetts, USA, 1995: 367–369

    Google Scholar 

  • Lopes da Silva F. H., Pijn J.P.M.and Velis D.N. Signal processing of EEG: evidence for chaos or noise. An application to seizure activity in epilepsy. In: Advances in Processing and Pattern Analysis of Biological Signals. Edited by I. Gath and G.F. Inbar. Plenum Press, New York, 1996.

    Google Scholar 

  • Lopes da Silva, F.H., Pijn, J.P.M., Velis, D. and Nijssen, P.C.G. Alpha rhythms: noise, dynamics and models. In: E. Basar, R. Hari, F.H. Lopes da Silva and M. Schürmann (Ed.), Alpha Activity: Cognitive and Sensory Behaviour, Boston, In Press.

  • Muhlnickel, W., Rendtorff, N., Kowalik, J., Rockstroh, B., Miltner, W. and, Elbert, T. Testing the determinism of EEG and MEG. Integrative Physiological and Behavioral Science, 1994, 29: 262–269.

    Google Scholar 

  • Müller-Gerking, J., Martinerie, J., Neuenschwander, S., Pezard, L., Renault, B. and Varela, F.J. Detecting non-linearities in neuro-electrical signals: a study of synchronous local field potentials. Physica D, 1996, 94: 65–91.

    Google Scholar 

  • van Neerven, J.M.A.M. Determination of the correlation dimension from a time series, applications to rat EEGs: sleep, theta rhythm and epilepsy. Master's thesis. Dept. Exp. Zoology, University of Amsterdam, 1987.

  • Osborne, A.R., Kirwan Jr, A.D., Provenzale, A. and Bergamasco, L. A Search for chaotic behavior and mesoscale motions in the pacific ocean. Physica D, 1986, 23: 75–83.

    Google Scholar 

  • Osborne, A.R. and Provenzale, A. Finite correlation dimension for stochastic systems with power-law spectra. Physica D, 1989, 35: 357–381.

    Google Scholar 

  • Palus, M. Testing for Nonlinearity in the EEG. Technical report CCSR-92-16, Center for Complex Systems Research, University of Illinois at Urbana-Champaign, 1992.

    Google Scholar 

  • Pezard, L., Martinerie, J., Müller-Gerking, J., Varela, F.J. and Renault, B. Entropy quantification of human brain spatiotemporal dynamics. Physica D, 1996, 96: 344–354.

    Google Scholar 

  • Pijn, J.P.M. Quantitative evaluation of EEG signals in epilepsy; nonlinear associations, time delays and nonlinear dynamics. Ph.D. thesis, Rodopi, Amsterdam, 1990.

    Google Scholar 

  • Pijn, J.P.M., van Neerven, J., Noest, A., Lopes da Silva, F.H. Chaos or noise in EEG signals: dependence on state and brain site. Electroenceph. clin. Neurophysiol., 1991, 79: 371–381.

    Google Scholar 

  • Pijn, J.P.M., Velis, D.N., van Emde Boas, W. and Lopes da Silva, F.H. Determination of seizure onsetby means of chaos theory analysis of EEG records. Epilepsia, suppl., 1992, 33: 64.

    Google Scholar 

  • Pradhan, N. and Narayana Dutt, D. A nonlinear perspective in understanding the neurodynamics of EEG. Comput. Biol. Med., 1993, 23: 425–442.

    Google Scholar 

  • Prichard, D. and Theiler, J. Generating surrogate data for time series with several simultaneously measured variables. Phys. Rev. Lett., 1994, 73: 951–954.

    Google Scholar 

  • Pritchard, W.S. and Duke, D.W. Measuring chaos in the brain: a tutorial review of nonlinear dynamical EEG analysis. Int. J. Neurosci., 1992, 67: (1–4): 31–80.

    Google Scholar 

  • Provenzale, A., Smith, L.A., Vio, R. and Murate, G. Distinguishing between low-dimensional dynamics and randomness in measured time series. Physica D, 1992, 58: 31–49.

    Google Scholar 

  • Rapp, P.E. A guide to dynamical analysis. Integr. Phys. and Behav. Sc., 1994, 29: 311–327.

    Google Scholar 

  • Rapp, P.E., Albano, A.M., Schmah, A.M. and Farwell, L.A. Filtered noise can mimic low-dimensional chaotic attractors. Phys. Rev. E, 1993, 47: 2289–2297.

    Google Scholar 

  • Rapp, P.E., Albano, A.M., Zimmerman, I.D. and Jimenéz-Montano, M.A. Phase-randomized surrogates can produce spurious identifications of non-random structure. Phys. Lett. A, 1994, 192: 27–33.

    Google Scholar 

  • Rombouts, S.A.R.B., Keunen, R.W.M. and Stam, C.J. Investigation of nonlinear structure in multichannel EEG. Phys. Lett. A, 1995, 202: 352–358.

    Google Scholar 

  • Schiff, S.J. and Chang, T. Differentiation of linearly correlated noise from chaos in a biologic system using surrogate data. Biol. Cybern., 1992, 67: 387–393.

    Google Scholar 

  • Skarda, C.A. and Freeman, W.J. How brains make chaos in order to make sense of the world. Behav. Brain Sci., 1987, 10: 161–195.

    Google Scholar 

  • Soong, A.C.K. and Stuart, C.I.J.M. Evidence of chaotic dynamics underlying the human alpha-rhythm electroencephalogram. Biol Cybern., 1989, 62: 55–62.

    Google Scholar 

  • Takens, F. Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics, 1981, 898: 366–381.

    Google Scholar 

  • Takens, F. Detecting nonlinearities in stationary time series. Int. J. Bifurc. Chaos, 1993, 3(2): 241–256.

    Google Scholar 

  • Theiler, J. Spurious dimension from correlation algorithms applied to limited time-series data. Phys. Rev. A, 1986, 34: 2427–2432.

    Google Scholar 

  • Theiler, J. On the evidence for low-dimensional chaos in an epileptic electroencephalogram. Physics Letters A, 1995, 196: 335–341.

    Google Scholar 

  • Theiler, J., Eubank, S., Longtin, A., Galdrikian, B. and Doyne Farmer, J. Testing for nonlinearity in time series: the method of surrogate data. Physica D, 1992A, 58: 77–94.

    Google Scholar 

  • Theiler, J., Galdrikian, B., Longtin, A., Eubank, S. and Farmer, J.D. In: M. Casdagli and S. Eubank (Ed.), Nonlinear Modeling and Forecasting. Addison-Wesley, Reading, MA., 1992B.

    Google Scholar 

  • Theiler, J. and Rapp, P.E. Re-examination of the evidence for low-dimensional nonlinear structure in the human electroencephalogram. Electroenceph. clin. Neurophysiol., 1996, 98: 213–223.

    Google Scholar 

  • Townsend III, J. B. and J. Engel Jr, J. “Clinicopathological correlations of low voltage fast and high amplitude spike and wave mesial temporal stereoencephalographic ictal onsets.” Epilepsia, 1991, 32(3): 21.

    Google Scholar 

  • van Veelen, C.W.M., Debets, R.M.Chr., Van Huffelen, A.C., Van Emde Boas, W., Binnie, C.D., Storm van Leeuwen, W., Velis, D.N., van Dieren, A. Combined use of subdural and intracerebral electrodes in preoperative evaluation of epilepsy. Neurosurgery, 1990, 26: 93–101.

    Google Scholar 

  • Wadman, W.J., Juta, A.J.A., Kamphuis, W. and Somjen, G.G. Current source density of sustained potential shifts associated with electrographic seizures and with spreading depression in rat hippocampus. Brain Research, 1992, 570: 85–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Pieter M. Pijn.

Additional information

We thank Tjeerd olde Scheper for his help in doing the analyses and Wouter Blanes for his continuous support in producing code for our computer as well as text for this manuscript. This work was subsidized in part by CLEO (Dutch Commission for research in Epilepsy), grants A71 and A88, by the NEF (Dutch Epilepsy Foundation), grant 95-01 and by NWO (Netherlands Organization for Scientific Research), grant 629-61-270.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pijn, J.P.M., Velis, D.N., van der Heyden, M.J. et al. Nonlinear dynamics of epileptic seizures on basis of intracranial EEG recordings. Brain Topogr 9, 249–270 (1997). https://doi.org/10.1007/BF01464480

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01464480

Key words

Navigation