Skip to main content
Log in

Performance comparison of SAM and SQP methods for structural shape optimization

  • Research Papers
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

This paper presents a numerical performance comparison of a modern version of the well-established sequential quadratic programming (SQP) method and the more recent spherical approximation method (SAM). The comparison is based on the application of these algorithms to examples with nonlinear objective and constraint functions, among others: weight minimization problems in structural shape optimization. The comparison shows that both the SQP and SAM-algorithms are able to converge to accurate minimum weight values. However, because of the lack of a guaranteed convergence property of the SAM method, it exhibits an inability to consistently converge to a fine tolerance. This deficiency is manifested by the appearance of small oscillations in the neighbourhood of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arora, J.S. 1989a:Introduction to optimum design. New York: McGraw-Hill

    Google Scholar 

  • Arora, J.S. 1989b: IDESIGN user's manual version 3.5.2.Technical report No. ODL-89.7, Optimal Design Laboratory, College of Engineering, The University of Iowa

  • Barthold, F.-J. 1993:Theory and computation of the analysis and optimization of isotropic, hyperelastic structures (in German). Ph.D. Dissertation, University of Hannover

  • Becker, A. 1992:Structural optimization of stability sensitive systems by means of analytical sensitivity analysis (in German). Ph.D. Dissertation, University of Hannover

  • Belegundu, A.D. 1985: A study of mathematical programming methods for structural optimization. Part I: theory, Part II: numerical results.Int. J. Num. Meth. Eng. 21, 1583–1623

    Google Scholar 

  • Bletzinger, K.U. 1990:Shape optimization of surface structures (in German). Ph.D. Dissertation, Institut für Baustatik, Univ. of Stuttgart

  • Canfield, R. 1995: A rank two Hessian matrix update for sequential quadratic approximation.Proc. 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf. (held in New Orleans, LA)

  • De Klerk, E.; Snyman, J.A. 1994: A feasible descent cone method for linearly constrained minimization problems.Comp. & Math. Appl. 28, 33–44

    Google Scholar 

  • Fadel, G.M.; Riley, M.F.; Barthelemy, J.M. 1990: Two-point exponential approximation method for structural optimization.Struct. Optim. 2, 117–124

    Google Scholar 

  • Falk, A. 1995: Adaptive methods for shape optimization of shell structures including CAD-FEM-coupling (in German). Ph.D. Dissertation, Institut für Baumechanik u. Numerische Mechanik, University of Hannover

  • Haftka, R.T.; Gürdal, Z. 1992:Elements of structural optimization. Boston: Kluwer

    Google Scholar 

  • Haftka, R.T.; Nachlas, J.A.; Watson, L.T.; Rizzo, T.; Desai, R. 1987: Two-point constraint approximation in structural optimization.Comp. Meth. Appl. Mech. Eng. 60, 289–301

    Google Scholar 

  • Han, S.-P. 1976: Superlinearly convergent variable metric algorithms for general nonlinear programming problems.Math. Prog. 11, 263–282

    Google Scholar 

  • Han, S.-P. 1977: A globally convergent method for nonlinear programming.J. Optimiz. Theory Appl. 22, 297–309

    Google Scholar 

  • Hock, W.; Schittkowski, K. 1981: Test examples for nonlinear programming codes.Lecture Notes in Economics and Mathematical Systems 187. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Mahnken, R. 1992:Dual methods for nonlinear optimization problems in structural mechanics (in German). Ph.D. Dissertation, Institut für Baumechanik u. Numerische Mechanik, University of Hannover

  • Powell, M.J.D. 1978a: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson, G.A. (ed.)Numerical analysis.Lecture Notes in Mathematics 630. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Powell, M.J.D. 1978b: The convergence of variable metric methods for nonlinearly constrained optimization calculations. In Mangasarian, O.L.; Meyer, R.R.; Robinson, S.M. (eds.)Nonlinear programming 3. New York: Academic Press

    Google Scholar 

  • Prasad, B. 1983: Explicit constraint approximation forms in structural optimization. Part 1: analyses and projections.Comp. Meth. Appl. Mech. Eng. 40, 1–26

    Google Scholar 

  • Schittkowski, K. 1981: The nonlinear programming method of Wilson, Han and Powell with an augmented Lagrangian type line search function.Numerische Mathematik 38, 83–114

    Google Scholar 

  • Schittkowski, K. 1983: On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function.Optimization, Mathematische Operationsforschung und Statistik 14, 197–216

    Google Scholar 

  • Schittkowski, K. 1985: On the global convergence of nonlinear programming algorithms.J. Mech. Trans. Auto. Des. 107, 454–458

    Google Scholar 

  • Schittkowski, K. 1987: More test examples for nonlinear programming codes.Lecture Notes in Economics and Mathematical Systems 282. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Schittkowski, K.; Zillober, C.; Zotemantel, R. 1994: Numerical comparison of nonlinear programming algorithms for structural optimization.Struct. Optim. 7, 1–19

    Google Scholar 

  • Schmit, L.A.; Farshi B. 1974: Some approximation concepts for structural synthesis.AIAA J. 12, 692–699

    Google Scholar 

  • Schmit, L.A.; Miura, H. 1976: Approximation concepts for efficient structural synthesis.NASA CR-2552

  • Snyman, J.A.; Stander, N. 1994: A new successive approximation method for optimum structural design.AIAA J. 32, 1310–1315

    Google Scholar 

  • Snyman, J.A.; Stander, N. 1996: Feasible descent cone methods for inequality constrained optimization problems.Int. J. Num. Meth. Eng. (to appear)

  • Stander, N.; Snyman, J.A. 1993: A new first order interior feasible direction method for structural optimization.Int. J. Num. Meth. Eng. 36, 4009–4026

    Google Scholar 

  • Stander, N.; Snyman, J.A.; Coster, J.E. 1995: On the robustness and efficiency of the SAM algorithm for structural optimization.Int. J. Num. Meth. Eng. 38, 119–135

    Google Scholar 

  • Starnes, J.H.; Haftka, R.T. 1979: Preliminary design of composite wings for buckling stress and displacement constraints.J. Aircraft 16, 564–570

    Google Scholar 

  • Sunar, M.; Belegundu, A.D. 1991: Trust region methods for structural optimization using exact second order sensitivity.Int. J. Numer. Meth. Eng. 32, 275–293

    Google Scholar 

  • Thanedar, P.B.; Arora, J.S.; Tseng, C.H.; Lim, O.K.; Park, G.J. 1986: Performance of some SQP algorithms on structural design problems.Int. J. Numer. Meth. Eng. 23, 2187–2203

    Google Scholar 

  • Tseng, C.H.; Arora, J.S. 1988: On implementation of computational algorithms for optimal design 1: preliminary investigation and 2: extensive numerical investigation.Int. J. Numer. Meth. Eng. 26, 1383–1402

    Google Scholar 

  • Venkayya, V.B.; Khot, N.S.; Reddy, V.S. 1968: Energy distribution in an optimum structural design.AFFDL-TR-68-156

  • Wilson, R.B. 1963:A simplical method for concave programming. Ph.D. Dissertation, Harvard University, Cambridge, Mass., USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthold, F.J., Stander, N. & Stein, E. Performance comparison of SAM and SQP methods for structural shape optimization. Structural Optimization 11, 102–112 (1996). https://doi.org/10.1007/BF01376852

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01376852

Keywords

Navigation