Skip to main content
Log in

An HRP-study of the frequency-place map of the horseshoe bat cochlea: Morphological correlates of the sharp tuning to a narrow frequency band

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The frequency-place map of the horseshoe bat cochlea was studied with the horseradish peroxidase (HRP) technique involving focal injections into various, physiologically defined regions of cochlear nucleus (CN). The locations of labeled spiral ganglion cells and their termination sites on inner hair cells of the organ of Corti from injections into CN-regions responsive to different frequencies were analyzed in three dimensional reconstructions of the cochlea. Horseshoe bats from different geographical populations were investigated. They emit orientation calls with constant frequency (CF) components around 77 kHz (Rhinolophus rouxi from Ceylon) and 84 kHz (Rhinolophus rouxi from India) and their auditory systems are sharply tuned to the respective CF-components.

The HRP-map shows that in both populations: (i) the frequency range around the CF-component of the echolocation signal is processed in the second half-turn of the cochlea, where basilar membrane (BM) is not thickened, secondary spiral lamina (LSS) is still present and innervation density is maximal; (ii) frequencies more than 5 kHz above the CF-component are processed in the first halfturn, where the thickened BM is accompanied by LSS and innervation density is low; (iii) frequencies below the spectral content of the orientation call are represented in apical turns showing no morphological specializations. The data demonstrate that the cochlea of horseshoe bats is normalized to the frequency of the individual specific CF-component of the echolocation call.

The HRP-map can account for the overrepresentation of neurons sharply tuned to the CF-signal found in the central auditory system. A comparison of the HRP-map with a map derived with the ‘swollen nuclei technique’ following loud sound exposure (Bruns 1976b) reveals that the latter is shifted towards cochlear base by about 4 mm. This discrepancy warrants a new interpretation of the functional role of specialized morphological structures of the cochlea within the mechanisms giving rise to the exceptionally high frequency selectivity of the auditory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AVCN :

anteroventral CN

BF :

best frequency

BM :

basilar membrane

CF :

constant frequency

CN :

cochlear nucleus

DCN :

dorsal CN

FM :

frequency modulated

HRP :

horseradish peroxidase

IHC :

inner hair cell

LSS :

secondary spiral lamina

OHC :

outer hair cell

PVCN :

posteroventral CN

RF :

resting frequency

RRc :

Rhinolophus rouxi from Ceylon

RRi :

Rhinolophus rouxi from India

References

  • Adams JC (1977) Technical considerations on the use of horseradish peroxidase as a neuronal marker. Neuroscience 2:142–145

    Google Scholar 

  • Beck C, Michler H (1960) Feinstrukturelle und histochemische Veränderungen an der Struktur der Cochlea des Meerschweinchens nach dosierter Reintonbeschallung. Arch Ohren Nasen Kehlkopfheilkd 174:496–567

    Google Scholar 

  • Békésy von G (1960) Experiments in hearing. McGraw-Hill Book Company, New York Toronto London

    Google Scholar 

  • Bredberg G, Hunter-Duvar IM (1975) Behavioral tests of hearing and inner ear damage. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology V/2. Springer, Berlin Heidelberg New York, pp 261–307

    Google Scholar 

  • Bruns V (1976a) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat,Rhinolophus ferrumequinum. I. Mechanical specializations of the cochlea. J Comp Physiol 106:77–86

    Google Scholar 

  • Bruns V (1976b) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat,Rhinolophus ferrumequinum. II. Frequency mapping in the cochlea. J Comp Physiol 106:87–97

    Google Scholar 

  • Bruns V (1979) Functional anatomy as an approach to frequency analysis in the mammalian cochlea. Verh Dtsch Zool Ges 1979, pp 141–154

    Google Scholar 

  • Bruns V (1980) Basilar membrane and its anchoring system in the cochlea of the Greater Horseshoe bat. Anat Embryol 161:29–50

    Google Scholar 

  • Bruns V, Goldbach M (1980) Hair cells and tectorial membrane in the cochlea of the Greater Horseshoe bat. Anat Embryol 161:51–63

    Google Scholar 

  • Bruns V, Schmieszek E (1980) Cochlear innervation in the Greater Horseshoe bat: Demonstration of an acoustic fovea. Hearing Res 3:27–43

    Google Scholar 

  • Bruns V, Hofer W, Weltzien P (1983) Quantitative Feinstrukturanalyse der Cochlea des Meerschweinchens. Verh Dtsch Zool Ges 1983, p 272

    Google Scholar 

  • Burda H (1984) Guinea pig hair cell density; its relation to frequency discrimination. Hearing Res 14:315–317

    Google Scholar 

  • Cody AR, Johnstone BM (1980) Single auditory neuron response during acute acoustic trauma. Hearing Res 3:3–16

    Google Scholar 

  • Cody AR, Johnstone BM (1981) Acoustic trauma: Single unit basis for the ‘half-octave shift’. J Acoust Soc Am 70:707–711

    Google Scholar 

  • Cody AR, Robertson D (1983) Variability of noise-induced damage in the guinea pig cochlea: Electrophysiological and morphological correlates after strictly controlled exposures. Hearing Res 9:55–70

    Google Scholar 

  • Davis H (1983) An active process in cochlear mechanics. Hearing Res 9:79–90

    Google Scholar 

  • De Boer E (1983a) No sharpening? A challenge for cochlear mechanics. J Acoust Soc Am 73:567–573

    Google Scholar 

  • De Boer E (1983b) On active and passive cochlear models. Towards a generalized analysis. J Acoust Soc Am 73:574–576

    Google Scholar 

  • De Boer E (1983c) Power amplification in an active model of the cochlea. Short-wave case. J Acoust Soc Am 73:577–579

    Google Scholar 

  • Ehret G (1975) Masked auditory thresholds, critical ratios, and scales of the basilar membrane of the housemouse (Mus musculus). J Comp Physiol 103:329–341

    Google Scholar 

  • Evans EF (1974) The effects of hypoxia on the tuning of single cochlear nerve fibers. J Physiol (Lond) 238:65–67

    Google Scholar 

  • Evans EF, Klinke R (1974) Reversible effects of cyanide and furosemide on the tuning of single cochlear nerve fibers. J Physiol (Lond) 242:129–131

    Google Scholar 

  • Evans EF, Wilson JP (1977) Cochlear frequency map for the cat. In: Evans EF, Wilson JP (eds) Psychophysics and physiology of hearing. Academic Press, New York, p 69

    Google Scholar 

  • Feng AS, Vater M (1985) Functional organization of the cochlear nucleus of roufous Horseshoe bats (Rhinolophus rouxi): Frequencies and internal connections are arranged in slabs. J Comp Neurol 235:529–555

    Google Scholar 

  • Goulios H, Robertson D (1983) Noise-induced cochlear damage assessed using electrophysiological and morphological criteria: an examination of the equal energy principle. Hearing Res 11:327–341

    Google Scholar 

  • Grinnell AD, Hagiwara S (1972) Adaptations of the auditory nervous system for echolocation. Z Vergl Physiol 76:41–81

    Google Scholar 

  • Henson MM (1978) The basilar membrane of the bat,Pteronotus p. parnellii. Am J Anat 153:143–158

    Google Scholar 

  • Henson OW Jr, Schuller G, Vater M (1985) A comparative study of the physiological properties of the inner ear in Doppler shift compensating bats (Rhinolophus rouxi andPteronotus parnellii). J Comp Physiol A 157:587–597

    Google Scholar 

  • Johnstone JR (1977) Properties of ganglion cells from the extreme basal region of Guinea pig cochlea. In: Evans EF, Wilson JP (eds) Psychophysics and Physiology of Hearing. Academic Press, New York San Francisco, pp 89–99

    Google Scholar 

  • Khanna SM, Leonard DGB (1982) Basilar membrane tuning in the cat cochlea. Science 215:305–306

    Google Scholar 

  • Kiang NYS, Rho JM, Northrop CC, Liberman MC, Ryugo DK (1982) Hair cell innervation by spiral ganglion cells in adult cats. Science 217:175–177

    Google Scholar 

  • Kössl M, Vater M (1985) The cochlear frequency map of the mustache bat,Pteronotus parnellii. J Comp Physiol A 157:687–697

    Google Scholar 

  • Kraus HJ (1983) Cochlea-Morphologie von Fledermausarten mit CF-FM Ortungslauten. Verh Dtsch Zool Ges 1983. Gustav Fischer, Stuttgart, p 91

    Google Scholar 

  • Kraus HJ, Fiedler A, Zöller H, Bruns V (1982) Dreidimensionale Rekonstruktion und quantitative Analyse der Säugetiercochlea. Verh Dtsch Zool Ges 1982, Gustav Fischer, Stuttgart, p 279

    Google Scholar 

  • Leake PA, Zook JM (1985) Demonstration of an acoustic fovea in the mustache bat,Pteronotus p. parnellii. In: Lim DJ (ed) Abstracts of eighth midwinter meeting of ARO. Association for Research in Otolaryngology, pp 27–28

  • Liberman MC (1982) The cochlear frequency map for the cat: Labeling auditory-nerve fibers of known characteristic frequency. J Acoust Soc Am 72:1441–1449

    Google Scholar 

  • Liberman MC (1984) Single-neuron labeling and chronic cochlear pathology. I. Threshold shift and characteristic-frequency shift. Hearing Res 16:33–41

    Google Scholar 

  • Long GR, Schnitzler H-U (1975) Behavioral audiograms from the bat,Rhinolophus ferrumequinum. J Comp Physiol 100:211–219

    Google Scholar 

  • Neely ST, Kim DO (1983) An active cochlear model showing sharp tuning and high sensitivity. Hearing Res 9:123–130

    Google Scholar 

  • Neuweiler G (1970) Neurophysiologische Untersuchungen zum Echoortungssystem der Großen HufeisennaseRhinolophus ferrumequinum Schreber, 1774. Z Vergl Physiol 67:273–306

    Google Scholar 

  • Neuweiler G (1980) Auditory processing of echoes: peripheral processing. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum Press, New York, pp 519–548

    Google Scholar 

  • Neuweiler G, Bruns V, Schuller G (1980) Ears adapted for the detection of motion, or how echolocating bats have exploited the capacities of the mammalian auditory system. J Acoust Soc Am 68:741–753

    Google Scholar 

  • Pollak GD, Schuller G (1981) Tonotopic organization and encoding features of single units in inferior colliculus of Horseshoe bats: Functional implications for prey identification. J Neurophysiol 45:208–226

    Google Scholar 

  • Pollak GD, Henson OW Jr, Novick A (1972) Cochlear microphonic audiograms in the ‘pure tone’ bat,Chilonycteris parnellii. Science 176:66–68

    Google Scholar 

  • Robertson D (1983) Functional significance of dendritic swelling after loud sounds in the guinea pig cochlea. Hearing Res 9:263–278

    Google Scholar 

  • Robertson D, Johnstone BM, McGill TJ (1980) Effects of loud tones on the inner ear: a combined electrophysiological and ultrastructural study. Hearing Res 2:39–53

    Google Scholar 

  • Schlegel P (1977) Directional coding by binaural brainstem units of the CF-FM bat,Rhinolophus ferrumequinum. J Comp Physiol 118:327–352

    Google Scholar 

  • Schmiedt RA, Feng AS (1980) Method for tracing single fibers in the organ of Corti with horseradish peroxidase. Hearing Res 2:79–85

    Google Scholar 

  • Schnitzler H-U (1968) Die Ultraschall-Ortungslaute der Hufeisenfledermäuse (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen. Z Vergl Physiol 57:376–408

    Google Scholar 

  • Schnitzler H-U, Menne D, Kober R, Heblich K (1983) The acoustical image of fluttering insects in echolocating bats. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York Tokyo, pp 235–250

    Google Scholar 

  • Schuller G (1980) Hearing characteristics and Doppler-shift compensation in South Indian CF-FM bats. J Comp Physiol 139:349–356

    Google Scholar 

  • Schuller G, Pollak G (1979) Disproportionate frequency representation in the inferior colliculus of Doppler-compensating Greater Horseshoe bats: Evidence for an acoustic fovea. J Comp Physiol 132:47–54

    Google Scholar 

  • Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. J Acoust Soc Am 72:131–141

    Google Scholar 

  • Spoendlin H (1973) The innervation of the cochlear receptor. In: Moller A (ed) Basic mechanisms in hearing. Academic Press, New York London, pp 185–235

    Google Scholar 

  • Steel KP (1983) The tectorial membrane of mammals. Hearing Res 9:327–359

    Google Scholar 

  • Steele CR, Zais J (1983) Basilar membrane properties and cochlear response. In: Boer E de, Viergeyer MA (eds) Mechanics of hearing. Proceedings of the IUTAM/ICA Symposium. Martinus Nijhoff Publishers, The Hague Boston Lancaster and Delft Univ Press pp 29–36

    Google Scholar 

  • Strelioff D, Flock Å (1984) Stiffness of sensory-cell hair bundles in the isolated Guinea pig cochlea. Hearing Res 15:19–28

    Google Scholar 

  • Suga N, Jen PH-S (1977) Further studies on the peripheral auditory system of ‘CF-FM’ bats specialized for fine frequency analysis of Doppler-shifted echoes. J Exp Biol 69:207–232

    Google Scholar 

  • Suga N, Neuweiler G, Möller J (1976) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat,Rhinolophus ferrumequinum. IV. Properties of peripheral auditory neurons. J Comp Physiol 106:111–125

    Google Scholar 

  • Webster DB, Webster M (1977) Auditory systems of Heteromyidae: Cochlear diversity. J Morphol 152:153–170

    Google Scholar 

  • Wilson JP, Bruns V (1983) Basilar membrane tuning properties in the specialised cochlea of the CF-bat,Rhinolophus ferrumequinum. Hearing Res 10:15–35

    Google Scholar 

  • Wilson JP, Johnstone JR (1975) Basilar membrane and middle ear vibration in guinea pig measured by capacitive probe. J Acoust Soc Am 57:705–723

    Google Scholar 

  • Zwicker E (1979) A model describing nonlinearities in hearing by active processes with saturation at 40 dB. Biol Cybern 35:243–250

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vater, M., Feng, A.S. & Betz, M. An HRP-study of the frequency-place map of the horseshoe bat cochlea: Morphological correlates of the sharp tuning to a narrow frequency band. J. Comp. Physiol. 157, 671–686 (1985). https://doi.org/10.1007/BF01351361

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01351361

Keywords

Navigation