Skip to main content
Log in

An optimal lower bound on the number of variables for graph identification

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

In this paper we show that Ω(n) variables are needed for first-order logic with counting to identify graphs onn vertices. Thek-variable language with counting is equivalent to the (k−1)-dimensional Weisfeiler-Lehman method. We thus settle a long-standing open problem. Previously it was an open question whether or not 4 variables suffice. Our lower bound remains true over a set of graphs of color class size 4. This contrasts sharply with the fact that 3 variables suffice to identify all graphs of color class size 3, and 2 variables suffice to identify almost all graphs. Our lower bound is optimal up to multiplication by a constant becausen variables obviously suffice to identify graphs onn vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. V. Aho, J. E. Hopcroft andJ. D. Ullman:The Design and Analysis of Computer Algorithms, Addison-Wesley (1974).

  2. M. Ajtai: Recursive Construction for 3-Regular Expanders,28th IEEE Symp. on Foundations of Computer Science (1987), 295–304.

  3. L. Babai: Monte Carlo Algorithms in Graph Isomorphism Testing, Tech. Rep. DMS 79-10, Université de Montréal, 1979.

  4. L. Babai: On the Complexity of Canonical Labeling of Strongly Regular Graphs,SIAM J. Computing 9 (1980), 212–216.

    Google Scholar 

  5. L. Babai: Moderately Exponential Bound for Graph Isomorphism,Proc. Conf. on Fundamentals of Computation Theory, Lecture Notes in Computer Science, Springer, 1981, 34–50.

  6. L. Babai: On the Order of Uniprimitive Permutation Groups,Annals of Math. 113 (1981), 553–568.

    Google Scholar 

  7. L. Babai:Permutation Groups, Coherent Configurations, and Graph Isomorphism, D. Sc. Thesis, Hungarian Acad. Sci., 1984 (in Hungarian).

  8. L. Babai, P. Erdős, andS. M. Selkow: Random Graph Isomorphism,SIAM J. on Comput. 9 (1980), 628–635.

    Google Scholar 

  9. L. Babai, W. M. Kantor, andE. M. Luks: Computational Complexity and the Classification of Finite Simple Groups,24th IEEE Symp. on Foundations of Computer Science (1983), 162–171.

  10. L. Babai andL. Kučera: Canonical Labelling of Graphs in Linear Average Time,20th IEEE Symp. on Foundations of Computer Science (1979), 39–46.

  11. L. Babai andE. M. Luks: Canonical Labeling of Graphs,15th ACM Symposium on Theory of Computing (1983), 171–183.

  12. D. M. Barrington, N. Immerman, andH. Straubing: On Uniformity Within NC1,J. Comput. System Sci. 41, No. 3 (1990), 274–306.

    Google Scholar 

  13. L. Babai andR. Mathon: Talk at the South-East Conference on Combinatorics and Graph Theory, 1980.

  14. P. J. Cameron: 6-Transitive Graphs,J. Combinat. Theory B 28, (1980), 168–179.

    Google Scholar 

  15. A. Chandra andD. Harel: Structure and Complexity of Relational Queries,J. Comput. System Sci. 25 (1982), 99–128.

    Google Scholar 

  16. A. Ehrenfeucht: An Application of Games to the Completeness Problem for Formalized Theories,Fund. Math. 49 (1961), 129–141.

    Google Scholar 

  17. R. Fraïssé: Sur quelques classifications des systèms de relations,Publ. Sci. Univ. Alger 1 (1954), 35–182.

    Google Scholar 

  18. M. Fürer, W. Schnyder, andE. Specker: Normal Forms for Trivalent Graphs and Graphs of Bounded Valence,15th ACM Symposium on Theory of Computing (1983), 161–170.

  19. Ya. Yu. Gol'fand andM. H. Klin: Onk-Regular Graphs, in:Algorithmic Research in Combinatorics, Nauka Publ., Moscow, 1978, 76–85.

    Google Scholar 

  20. Yu. Gurevich: Logic and the Challenge of Computer Science, in:Current Trends in Theoretical Computer Science, ed. Egon Börger, Computer Science Press, 1988, 1–57.

  21. D. G. Higman: Coherent Configurations I.: Ordinary Representation Theory,Geometriae Dedicata 4 (1975), 1–32.

    Google Scholar 

  22. N. Immerman: Number of Quantifiers is Better than Number of Tape Cells,J. Comput. System Sci. 22, No. 3 (1981), 384–406.

    Google Scholar 

  23. N. Immerman: Upper and Lower Bounds for First Order Expressibility,J. Comput. System Sci. 25, No. 1 (1982), 76–98.

    Google Scholar 

  24. N. Immerman: Relational Queries Computable in Polynomial Time,Information and Control 68 (1986), 86–104.

    Google Scholar 

  25. N. Immerman: Languages That Capture Complexity Classes,SIAM J. Computing 16, No. 4 (1987), 760–778.

    Google Scholar 

  26. N. Immerman andD. Kozen: Definability with Bounded Number of Bound Variables,Information and Computation 83 (1989), 121–139.

    Google Scholar 

  27. N. Immerman andE. S. Lander: Describing Graphs: A First-Order Approach to Graph Canonization, in:Complexity Theory Retrospective, Alan Selman, ed., Springer-Verlag, 1990, 59–81.

  28. N. Immerman, S. Patnaik, andD. Stemple: The Expressiveness of a Family of Finite Set Languages,Tenth ACM Symposium on Principles of Database Systems (1991), 37–52.

  29. L. Kučera: Canonical Labeling of Regular Graphs in Linear Average Time,28th IEEE Symp. on Foundations of Computer Science (1987), 271–279.

  30. M. H. Klin, M. E. Muzichuk, andI. A. Faradžev: Cellular Rings and Groups of Automorphism of Graphs, Introductory Article to a Book to be Published by D. Reidel Publ. Co.

  31. M. Ch. Klin, R. Pöschel, andK. Rosenbaum: Angewandte Algebra, Vieweg & Sohn Publ., Braunschweig 1988.

    Google Scholar 

  32. R. Lipton: The Beacon Set Approach to Graph Isomorphism, Yale Dept. Comp. Sci. preprint No. 135, 1978.

  33. E. M. Luks: Isomorphism of Graphs of Bounded Valence Can be Tested in Polynomial Time,J. Comput. System Sci. 25 (1982), 42–65.

    Google Scholar 

  34. R. Mathon: A Note On the Graph Isomorphism Counting Problem,Inform. Proc. Let. 8 (1979), 131–132.

    Google Scholar 

  35. B. D. McKay: Nauty User's Guide (Version 1.2), Tech. Rep. TR-CS-87-03, Dept. Computer Science, Austral. National Univ., Melbourne, 1987.

    Google Scholar 

  36. G. L. Miller: On then logn Isomorphism Technique,10th ACM Symposium on Theory of Computing (1978), 51–58.

  37. R. C. Read andD. G. Corneil: The Graph Isomorphism Disease,J. Graph Theory 1 (1977), 339–363.

    Google Scholar 

  38. M. Vardi: Complexity of Relational Query Languages,14th ACM Symposium on Theory of Computing (1982), 137–146.

  39. B. Weisfeiler, ed.:On Construction and Identification of Graphs, Lecture Notes in Mathematics 558, Springer, 1976.

  40. B. Weisfeiler andA. A. Lehman: A Reduction of a Graph to a Canonical Form and an Algebra Arising during this Reduction, (in Russian),Nauchno-Technicheskaya Informatsia, Seriya 2,9 (1968), 12–16.

    Google Scholar 

  41. V. N. Zemlyachenko, N. Kornienko, andR. I. Tyshkevich:Graph Isomorphism Problem, (in Russian), The Theory fo Computation I, Notes Sci. Sem. LOMI 118, 1982.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by NSF grant CCR-8709818.

Research supported by NSF grant CCR-8805978 and Pennsylvania State University Research Initiation grant 428-45.

Research supported by NSF grants DCR-8603346 and CCR-8806308.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, JY., Fürer, M. & Immerman, N. An optimal lower bound on the number of variables for graph identification. Combinatorica 12, 389–410 (1992). https://doi.org/10.1007/BF01305232

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01305232

AMS subject classification code (1991)

Navigation