Skip to main content
Log in

DNase I sensitivity in facultative and constitutive heterochromatin

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

In situ nick translation allows the detection of DNase I sensitive and insensitive regions in fixed mammalian mitotic chromosomes. We have determined the difference in DNase I sensitivity between the active and inactive X chromosomes inMicrotus agrestis (rodent) cells, along both their euchromatic and constitutive heterochromatic regions. In addition, we analysed the DNase I sensitivity of the constitutive heterochromatic regions in mouse chromosomes. InMicrotus agrestis female cells the active X chromosome is sensitive to DNase I along its euchromatic region while the inactive X chromosome is insensitive except for an early replicating region at its distal end. The late replicating constitutive heterochromatic regions, however, in both the active and inactive X chromosome are sensitive to DNase I. In mouse cells on the other hand, the constitutive heterochromatin is insensitive to DNase I both in mitotic chromosomes and interphase nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrighi FE, Hsu TC, Saunders P, Saunders GF (1970) Localization of repetitive DNA in the chromosomes of microtus agrestis by means of in situ hybridization. Chromosoma 32:224–236

    PubMed  Google Scholar 

  • Cooper JE, Hsu TC (1972) The C band and G band patterns of Microtus agrestis chromosomes. Cytogenetics 11:295–304

    PubMed  Google Scholar 

  • Gaillard C, Doly J, Cortadas J, Bernardi G (1981) The primary structure of bovine satellite 1.715. Nucl Acids Res 9:6069–6082

    PubMed  Google Scholar 

  • Garel A, Axel R (1976) Selective digestion of transcriptionally active ovalbumin genes from oviduct nuclei. Proc Natl Acad Sci USA 73:3966–3970

    PubMed  Google Scholar 

  • Gazit B, Cedar H, Lerer I, Voss R (1982) Active genes are sensitive to Deoxyribonuclease I during metaphase. Science 217:648–650

    PubMed  Google Scholar 

  • Gjerset RA, McCarthy BJ (1977) Limited accessibility of chromatin satellite DNA to RNA polymerase from E. coli. Proc Natl Acad Sci USA 74:4337–4340

    PubMed  Google Scholar 

  • Goodfellow P, Pym B, Mohandas T, Shapiro LJ (1984) The cell surface antigen locus, MIC2X, escapes X-inactivation. Am J Hum Genet 36:777–782

    PubMed  Google Scholar 

  • Holmquist G, Gray M, Porter T, Jordan J (1982) Characterization of Giemsa dark- and light-band DNA. Cell 31:121–129

    PubMed  Google Scholar 

  • Hsu TC (1962) Differential rate in RNA synthesis between euchromatin and heterochromatin. Exp Cell Res 27:332–334

    PubMed  Google Scholar 

  • Kaput J, Sneider TW (1979) Methylation of somatic vs germ cell DNA analyzed by restriction endonuclease digestions. Nucleic Acids Res 7:2303–2322

    PubMed  Google Scholar 

  • Kerem B, Goitein R, Richler C, Marcus M, Cedar H (1983) In situ nick translation distinguishes between active and inactive X chromosomes. Nature 5921:89–90

    Google Scholar 

  • Kerem B, Goitein R, Diamond G, Cedar H, Marcus M (1984) Mapping of DNase I sensitive regions on mitotic chromosomes. Cell 38:493–499

    PubMed  Google Scholar 

  • Lee JC, Yunis JJ (1971) Cytological variation in the constitutive heterochromatin of Microtus agrestis. Chromosoma 35:117–124

    PubMed  Google Scholar 

  • Lyfschytz E, Hareven D, Azriel A, Brodsly H (1983) DNA clones and RNA transcripts of four lampbrush loops from the Y chromosome of Drosophila hydei. Cell 32:191–199

    PubMed  Google Scholar 

  • Marcus M, Nielsen K, Goitein R, Gropp A (1979) Pattern of condensation of mouse and Chinese-hamster chromosomes in G2 and mitosis in 33258-Hoechst treated cells. Exp Cell Res 122:191–201

    PubMed  Google Scholar 

  • Pardue ML, Gall JG (1970) Chromosomal localization of mouse satellite DNA. Science 168:1356–1358

    PubMed  Google Scholar 

  • Salmon R, Kaye AM, Herzgerg M (1969) Mouse nuclear satellite DNA: 5-methylcytosine content, pyrimidine isoplith distribution and electron microscopic appearance. J Mol Biol 43:581–592

    PubMed  Google Scholar 

  • Schmid W (1967) Heterochromatin in mammals. Arch. Klaus. Stift. Vererb-Forsch 42:1–60

    Google Scholar 

  • Sieger M, Pera F, Schwarzacher HG (1970) Genetic inactivity of heterochromatin and heteropycnosis in Microtus agrestis. Chromosoma 29:349–364

    PubMed  Google Scholar 

  • Sperling K (1982) Cell cycle and chromosome cycle: morphological and functional aspects. In: Rao PN, Johnson RT, Sperling K (eds) Premature chromosome condensation. Academic Press, New York

    Google Scholar 

  • Sperling K, Rao PN (1974) Mammalian cell fusion. Chromosoma 45:121–131

    PubMed  Google Scholar 

  • Stalder J, Groudine M, Dodgson JB, Engel JD, Weintraub H (1980) Hb switching in chickens. Cell 19:973–980

    PubMed  Google Scholar 

  • Varley JM, Macgregor HC, Erba HP (1980) Satellite DNA is transcribed on lampbrush chromosomes. Nature 283:686–689

    PubMed  Google Scholar 

  • Weintraub H, Groudine M (1976) Chromosomal subunits in active genes have an altered conformation. Science 193:848–856

    PubMed  Google Scholar 

  • Wolf U, Flinspack G, Bohm R, Ohno S (1965) DNS Reduplikationsmuster bei den Riesen Geschlechtschromosomen von Micotus agrestis. Chromosoma 16:609–617

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sperling, K., Kerem, B.S., Goitein, R. et al. DNase I sensitivity in facultative and constitutive heterochromatin. Chromosoma 93, 38–42 (1985). https://doi.org/10.1007/BF01259444

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01259444

Keywords

Navigation