Skip to main content
Log in

Morphological and electrophysiological evidence for habenular influence on the guinea-pig pineal gland

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The central innervation of the guinea-pig pineal gland was investigated by histological and electrophysiological methods:

Staining the pineal gland and the epithalamus, a double route of central innervation could be shown in the anterior part of the organ:

  1. (a)

    Fibres from the habenular nuclei, mainly from the lateral part, penetrate the organ via the pineal stalk.

  2. (b)

    Other fibres join the striae medullares and running in the habenulae reach the organ more dorsally. The fibres end in the intercellular space where they form a dense network.

In 15 male guinea-pigs under urethane anesthesia, two series of unit recording experiments were performed:

  1. (a)

    Recordings were made from 128 units in the posterior and anterior part of the pineal gland and the effects of electrical stimulation of the habenular nuclei were observed. Lateral habenular stimulation influenced 44% of the units. 80% of these were excited and 20% were inhibited.

  2. (b)

    Recordings were made from 42 units in the lateral habenular nucleus. Twelve units (29%) responded with an augmentation of spontaneous activity following pineal gland stimulation. No inhibition response was observed.

It is suggested that the habenular nucleus can modify activity in the pineal gland and that vice versa an influence might be possible from the pineal gland upon single units in the habenular nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aus der Mühlen, K., Ockenfels, H. Morphologische Veränderungen im Diencephalon and Telencephalon nach Störungen des Regelkreises Adenohypophyse-Nebennierenrinde. I. Ergebnisse beim Meerschweinchen nach Verabreichung von natürlichem und synthetischem ACTH. Zschr. Zellforsch.85, 124–144 (1968).

    Google Scholar 

  • Bargmann, W. Die Epiphysis cerebri. In: Hdb. mikrosk. Anat. Mensch, Bd. VI, 4, pp. 309–502 (v. Möllendorff, W., Hrsg.). Berlin: Springer. 1943.

    Google Scholar 

  • Björklund, A., Owman, Ch., West, K. A. Peripheral sympathetic innervation and serotonin cells in the habenular region of the rat brain. Zschr. Zellforsch.127, 570–579 (1972).

    Google Scholar 

  • Buijs, R. M., Pévet, P. Vasopressin- and oxytocin-containing fibres in the pineal gland and subcommissural organ of the rat. Cell Tissue Res.205, 11–17 (1980).

    Google Scholar 

  • Cadusseau, J., Gaillard, F., Galand, G. Pineal response types in the frog's brain under white light exposure. Exp. Brain Res.36, 41–51 (1979).

    Google Scholar 

  • Dafny, N. Electrophysiological evidence of photic, acoustic, and central input to the pineal body and hypothalamus. Exp. Neurol.55, 449–457 (1977).

    Google Scholar 

  • David, G. F. X., Herbert, J. Experimental evidence for a synaptic connection between habenula and pineal ganglion in the ferret. Brain Res.64, 327–343 (1973).

    Google Scholar 

  • David, G. F. X., Herbert, J., Wright, G. D. S. The ultrastructure of the pineal ganglion in the ferret. J. Anat. (Lond.)115, 79–97 (1973).

    Google Scholar 

  • Gardner, J. H. Innervation of pineal gland in hooded rat. J. comp. Neurol.99, 319–327 (1953).

    Google Scholar 

  • Guerillot, C., Lefray, P., Pfister, A., Da Lage, D. Contribution to the study of the pineal stalk nerve fibres in the rat. In: The Pineal Gland of Vertebrates Including Man (Progr. in Brain Research, Vol. 52) (Ariëns Kappers, J., Pévet, P., eds.), pp. 45–88. Amsterdam: Elsevier. 1979.

    Google Scholar 

  • Hammond, P. On the use of nitrous oxide/oxygen mixtures for anaesthesia in cats. J. Physiol.275, 64 (1978).

    Google Scholar 

  • Hartmann, F. Über die Innervation der Epiphysis cerebri einiger Säugetiere. Zschr. Zellforsch.46, 416–429 (1957).

    Google Scholar 

  • Herbert, J. The role of the pineal body in the control by light of the reproductive cycle of the ferret. In: The Pineal Gland (Ciba Foundation Symposium) (Wolstenholme, G. E. W., Knight, J., eds.), pp. 303–327. Edinburgh-London: Churchill Livingstone. 1971.

    Google Scholar 

  • Holmes, W. Silver staining of nerve axons in paraffin sections. Anatomical Record86, 157–187 (1943).

    Google Scholar 

  • Hülsemann, M. Development of the innervation in the human pineal organ. Light and electron microscopic investigations. Zschr. Zellforsch.115, 396–415 (1971).

    Google Scholar 

  • Kappers, J. A. The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. Zschr. Zellforsch. Mikrosk. Anat.52, 163–215 (1960).

    Google Scholar 

  • Kappers, J. A. Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. Progr. Brain Res.10, 87–153 (1965).

    Google Scholar 

  • Klüver, H., Barerra, E. A method for the combined staining of cells and fibres in the nervous system. J. Neuropath, exp. Neurol.12, 400–403 (1953).

    Google Scholar 

  • Korf, H. W., Wagner, U. Evidence for a nervous connection between the brain and the pineal organ in the guinea pig. Cell Tissue Res.209, 505–510 (1980).

    Google Scholar 

  • Le Gros Clark, W. E. The nervous and vascular relations of the pineal gland. J. Anat. (Lond.)74, 470–492 (1940).

    Google Scholar 

  • Lues, G. Die Feinstruktur der Zirbeldrüse normaler, trächtiger und experimentell beeinflußter Meerschweinchen. Zschr. Zellforsch. Mikrosk. Anat.114, 38–60 (1971).

    Google Scholar 

  • Lin, H. S., Hwang, B. H., Tseng, C. Y. Fine structural changes in the hamster pineal gland after blinding and superior cervical ganglionectomy. Cell Tiss. Res.158, 285–299 (1975).

    Google Scholar 

  • Luparello, T. J. Stereotaxic Atlas of the Forebrain of the Guinea-Pig. Basel-New York: S. Karger. 1967.

    Google Scholar 

  • McClung, R., Dafny, N. Neurophysiological properties of the pineal body. II. Single unit recording. Life Sci.16, 621–628 (1975).

    Google Scholar 

  • Mok, A. C. S., Mogenson, G. J. An evoked potential study of the projections to the lateral habenular nucleus from the septum and the lateral preoptic area in the rat. Brain Res.43, 343–360 (1972 a).

    Google Scholar 

  • Mok, A. C. S., Mogenson, G. J. Effect of electrical stimulation of the septum and the lateral preoptic area on unit activity of the lateral habenular nucleus in the rat. Brain Res.43, 361–372 (1972 b).

    Google Scholar 

  • Mok, A. C. S., Mogenson, G. J. Effects of electrical stimulation of the lateral hypothalamus, hippocampus, amygdala and olfactory bulb on unit activity of the lateral habenular nucleus in the rat. Brain Res.77, 417–429 (1974).

    Google Scholar 

  • Møller, M. The ultrastructure of the human fetal pineal gland. Cell. Tiss. Res.152, 13–30 (1974).

    Google Scholar 

  • Møller, M. Presence of a pineal nerve (nervus pinealis) in the human fetus; a light and electron microscopical study of the innervation of the pineal gland. Brain Res.154, 1–12 (1978).

    Google Scholar 

  • Møller, M., Møllgard, K., Kimble, J. E. Presence of a pineal nerve in sheep and rabbit fetuses. Cell Tiss. Res.158, 451–459 (1975).

    Google Scholar 

  • Møller, M., Nielsen, J. T., Van Veen, Th. Effect of superior cervical ganglionectomy on monoamine content in the epithalamic area of the mongolian gerbil (Meriones unguiculatus): a fluorescence histochemical study. Cell Tiss. Res.201, 1–9 (1979).

    Google Scholar 

  • Møllgard, K., Møller, M. On the innervation of the human fetal pineal gland. Brain Res.52, 428–432 (1973).

    Google Scholar 

  • Nielsen, J. T., Møller, M. Nervous connection between the brain and the pineal in the cat (Felis catus) and the monkey (Cercopithecus aethiops). Cell Tiss. Res.161, 293–301 (1975).

    Google Scholar 

  • Pastori, G. Ein bis jetzt noch nicht beschriebenes sympathisches Ganglion und dessen Beziehungen zum Nervus conarii sowie zur Vena magna Galeni. Z. ges Neurol. Psychiat.123, 81–90 (1928).

    Google Scholar 

  • Paul, E., Hartwig, H. G., Oksche, A.: Neurone und zentralnervöse Verbindungen des Pinealorgans der Anuren. Zschr. Zellforsch.112 (1971).

  • Peschke, E., Wetzig, H., Blume, R. Karyometrische, cytologische und konkordanzanalytische Untersuchungen zur Bedeutung des Epithalamus (Nuclei habenulares) im Regelkreis Adenohypophyse-Schilddrüse an weißen Ratten nach Behandlung mit Thyreostatica und Alloxan. Gegenbaurs morph. Jahrb. (Leipzig)116, 63–90 (1971).

    Google Scholar 

  • Pfister, A., Guérillot, C., Müller, J., Vendrely, E., Da Lage, C. Existence d'une innervation d'origine centrale dans l'épiphyse du hamster et du rat. J. Physiol. (Paris)70, 10 B (Abstract) (1975).

    Google Scholar 

  • Pfister, A., Müller, J., Lefray, P., Guérillot, C., Vendrely, E., Da Lage, C. Investigation on a possible extraorthosympathetic innervation of the pineal in rat and hamster. J. Neural Transm., Suppl. 13, pp. 390–391. Wien-New York: Springer. 1978.

    Google Scholar 

  • Rausch, L. J., Long, C. J. Habenular nuclei: a crucial link between the olfactory and motor systems. Brain Res.19, 146–150 (1971).

    Google Scholar 

  • Reiter, R. J.: Pineal-anterior pituitary gland relationship. In: MTP International Review of Science (Physiology Series One, Vol. 5, Endocrine Physiology) (McCann, S. M., ed.), pp. 277–308. 1974.

  • Reiter, R. J., Sorrentino, S. J. Factors influential in determining the gonadinhibiting activity of the pineal gland. In: The Pineal Gland (Wolstenholme, G. E. W., Knight, J., eds.), pp. 329–344. London: Churchill. 1971.

    Google Scholar 

  • Reiter, R. J., Klein, D. C., Donofrio, R. J. Preliminary observations on the reproductive effects of the pineal gland in blinded, anosmic male rats. J. Reprod. Fertil.19, 563–565 (1969).

    Google Scholar 

  • Romijn, H. J.: Structure and innervation of the pineal gland of the rabbit,Qryctolagus cuniculus (L.), with some functional considerations. Thesis, University of Amsterdam, pp. 1–79, 1972.

  • Romijn, H. J. The pineal, a tranquillizing organ. Life Sci.23, 2257–2274 (1978).

    Google Scholar 

  • Rønnekleiv, O. K., Kelly, M. J., Møller, M., Wuttke, W. Electrophysiological and morphological evidence of direct central innervation of the pineal gland. Pflügers Archiv, Suppl.373, 187 (1978).

    Google Scholar 

  • Rønnekleiv, O. K., Møller, M. Brain-pineal nervous connections in the rat: an ultrastructural study following habenular lesion. Exp. Brain Res.37, 551–562 (1979).

    Google Scholar 

  • Schapiro, S., Salas, M. Effects of age, light and sympathetic innervation on electrical activity of the rat pineal gland. Brain Res.28, 47–55 (1971).

    Google Scholar 

  • Semm, P. Electrophysiological and morphological aspects of the guinea-pig epiphysis cerebri. J. Neural Transm., Suppl. 13, pp. 394–395. Wien-New York: Springer. 1978.

    Google Scholar 

  • Semm, P., Vollrath, L. Electrophysiology of the guinea-pig pineal organ: Sympathetically influenced cells responding differently to light and darkness. Neurosci. Lett.12, 93–96 (1979 a).

    Google Scholar 

  • Semm, P., Vollrath, L. Electrophysiology of the guinea-pig pineal organ: sympathetic influence and different reactions to light and darkness. In: The Pineal Gland of Vertebrates Including Man (Progr. in Brain Research, Vol. 52) (Ariëns Kappers, J., Pévet, P., eds.). Amsterdam: Elsevier. 1979 b.

    Google Scholar 

  • Semm, P., Vollrath, L. Electrophysiological evidence for circadian rhythmicity in a mammalian pineal organ. J. Neural Transm.47, 181–190 (1980).

    Google Scholar 

  • Semm, P., Demaine, C., Vollrath, L.: Electrical responses of pineal cells to melatonin and putative transmitters: evidence for circadian changes in sensitivity. Exptl. Brain Res. (submitted).

  • Thomas, R. C., Wilson, V. J. Precise localization of Renshaw cells with a new marking technique. Nature (Lond.)206, 211–213 (1965).

    Google Scholar 

  • Tindal, J. S. The forebrain of the guinea-pig in stereotaxic coordinates. J. comp. Neur.124, 259–266 (1965).

    Google Scholar 

  • Trueman, T., Herbert, J. Monoamines and acetylcholinesterase in the pineal gland and habenula of the ferret. Zschr. Zellforsch.109, 83–100 (1970).

    Google Scholar 

  • Ueck, M. Innervation of the vertebrate pineal. In: The Pineal Gland of Vertebrates Including Man (Progr. in Brain Research, Vol. 52) (Ariëns Kappers, J., Pévet, P., eds.), pp. 45–88. Amsterdam: Elsevier. 1979.

    Google Scholar 

  • Vollrath, L. Synaptic ribbons of a mammalian pineal gland. Circadian changes. Zschr. Zellforsch. Mikrosk. Anat.145, 171–183 (1973).

    Google Scholar 

  • Vollrath, L. Comparative morphology of the vertebrate pineal complex. In: The Pineal Gland of Vertebrates Including Man (Progr. in Brain Research, Vol. 52) (Ariëns Kappers, J., Pévet, P., eds.), pp. 25–38. Amsterdam: Elsevier. 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Financial support of the Volkswagenwerk-Stiftung is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semm, P., Schneider, T. & Vollrath, L. Morphological and electrophysiological evidence for habenular influence on the guinea-pig pineal gland. J. Neural Transmission 50, 247–266 (1981). https://doi.org/10.1007/BF01249146

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01249146

Keywords

Navigation