Skip to main content
Log in

Quantum groups

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

The paper is the expanded text of a report to the International Mathematical Congress in Berkeley (1986). In it a new algebraic formalism connected with the quantum method of the inverse problem is developed.

Examples are constructed of noncommutative Hopf algebras and their connection with solutions of the Yang-Baxter quantum identity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  1. J. W. Milnor and J. C. Moore, “On the structure of Hopf algebras,” Ann. Math.,81, No. 2, 211–264 (1965).

    Google Scholar 

  2. M. E. Sweedler, Hopf Algebras, Mathematical Lecture Notes Series, Benjamin, N.Y. (1969).

    Google Scholar 

  3. E. Abe, Hopf Algebras, Cambridge Tracts in Math., No. 74, Cambridge Univ. Press, Cambridge-New York (1980).

    Google Scholar 

  4. G. M. Bergman, “Everybody knows what a Hopf algebra is,” Contemporary Mathematics,43, 25–48 (1985).

    Google Scholar 

  5. M. E. Sweedler, “Integrals for Hopf algebras,” Ann. Math.,89, No. 2, 323–335 (1969).

    Google Scholar 

  6. R. G. Larson, “Characters of Hopf algebras,” J. Algebra,17, No. 3, 352–368 (1971).

    Google Scholar 

  7. W. C. Waterhouse, “Antipodes and group-likes in finite Hopf algebras,” J. Algebra,37, No. 2, 290–295 (1975).

    Google Scholar 

  8. D. E. Radford, “The order of the antipode of a finite dimensional Hopf algebra is finite,” Am. J. Math.,98, No. 2, 333–355 (1976).

    Google Scholar 

  9. H. Shigano, “A correspondence between observable Hopf ideals and left coideal subalgebras,” Tsukuba J. Math.,1, 149–156 (1977).

    Google Scholar 

  10. E. J. Taft and R. L. Wilson, “There exist finite-dimensional Hopf algebras with antipodes of arbitrary even order,” J. Algebra,162, No. 2, 283–291 (1980).

    Google Scholar 

  11. H. Shigano, “On observable and strongly observable Hopf ideals,” Tsukuba J. Math.,6, No. 1, 127–150 (1982).

    Google Scholar 

  12. B. Pareigis, “A noncommutative noncocommutative Hopf algebra in ‘nature’,” J. Algebra,70, No. 2, 356–374 (1981).

    Google Scholar 

  13. G. I. Kats, “Generalization of the group duality principle,” Dokl. Akad. Nauk SSSR,138, No. 2, 275–278 (1961).

    Google Scholar 

  14. G. I. Kats, “Compact and discrete ring groups,” Ukr. Mat. Zh.,14, No. 3, 260–270 (1962).

    Google Scholar 

  15. G. I. Kats, “Ring groups and duality principles,” Tr. Moskov. Mat. Obshch.,12, 259–303 (1963);13, 84–113 (1965).

    Google Scholar 

  16. G. I. Kats and V. G. Palyutkin, “Example of a ring group generated by Lie groups,” Ukr. Mat. Zh.,16, No. 1, 99–105 (1964).

    Google Scholar 

  17. G. I. Kats and V. G. Palyutkin, “Finite ring groups,” Tr. Moskov. Mat. Obshch.,15, 224–261 (1966).

    Google Scholar 

  18. G. I. Kats, “Extensions of groups which are ring groups,” Mat. Sb.,76, No. 3, 473–496 (1968).

    Google Scholar 

  19. G. I. Kats, “Some arithmetic properties of ring groups,” Funkts. Anal. Prilozhen.,6, No. 2, 88–90 (1972).

    Google Scholar 

  20. L. I. Vainerman and G. I. Kats, “Nonunimodular ring groups and Hopf-von Neumann algebras,” Mat. Sb.,94, No. 2, 194–225 (1974).

    Google Scholar 

  21. M. Enock and J.-M. Schwartz, “Une dualite dans les algebres de von Neumann,” Bull. Soc. Mat. France, Mem. No. 44 (1975).

  22. J.-M. Schwartz, “Relations entre ‘ring groups’ et algebres de Kac,” Bull. Sci. Math. (2),100, No. 4, 289–300 (1976).

    Google Scholar 

  23. M. Enock, “Produit croise d'une algebre de von Neumann par une algebre de Kac,” J. Funct. Analysis,26, No. 1, 16–47 (1977).

    Google Scholar 

  24. M. Enock and J.-M. Schwartz, “Produit croise d'une algebre de von Neumann par une algebre de Kac, II,” Publ. RIMS Kyoto Univ.,16, No. 1, 198–232 (1980).

    Google Scholar 

  25. J. de Canniere, M. Enock, and J.-M. Schwartz, “Algebres de Fourier associees a une algebre de Kac,” Math. Ann.,245, No. 1, 1–22 (1979).

    Google Scholar 

  26. J. de Canniere, M. Enock, and J.-M. Schwartz, “Sur deux resultats d'analyse harmonique non-commutative: Une application de la theorie des algebres de Kac,” J. Operator Theory,5, No. 2, 171–194 (1981).

    Google Scholar 

  27. V. G. Drinfel'd, “Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the classical Yang-Baxter equations,” Dokl. Akad. Nauk SSSR,268, No. 2, 285–287 (1982).

    Google Scholar 

  28. V. G. Drinfel'd, “Hopf algebras and the quantum Yang-Baxter equation,” Dokl. Akad. Nauk SSSR,283, No. 5, 1060–1064 (1985).

    Google Scholar 

  29. I. M. Gel'fand and I. V. Cherednik, “Abstract Hamiltonian formalism for classical Yang-Baxter bundles,” Usp. Mat. Nauk,38, No. 3, 3–21 (1983).

    Google Scholar 

  30. I. V. Cherednik, “Bäcklund-Darboux transformations for classical Yang-Baxter bundles,” Funkts. Anal. Prilozhen.,17, No. 2, 88–89 (1983).

    Google Scholar 

  31. I. V. Cherednik, “Definition of τ-functions for generalized affine Lie algebras,” Funkts. Anal. Prilozhen.,17, No. 3, 93–95 (1983).

    Google Scholar 

  32. I. M. Gel'fand and I. Ya. Dorfman, “Hamiltonian operators and the classical Yang-Baxter equations,” Funkts. Anal. Prilozhen.,16, No. 4, 1–9 (1982).

    Google Scholar 

  33. A. Weinstein, “The local structure of Poisson manifolds,” J. Diff. Geometry,18, No. 3, 523–557 (1983).

    Google Scholar 

  34. J. A. Schouten, “Über differentialkomitanten zweier kontravarianter Grössen,” Nederl. Akad. Wetensch. Proc. Ser. A,43, 449–452 (1940).

    Google Scholar 

  35. L. D. Faddeev and L. A. Takhtajan, Hamiltonian Approach to Soliton Theory, Springer-Verlag (to appear).

  36. L. D. Faddeev, Integrable Models in (1+1)-Dimensional Quantum Field Theory (Lectures in Les Houches, 1982), Elsevier (1984).

  37. E. K. Sklyanin, “Quantum version of the method of the inverse scattering problem,” in: Differential Geometry, Lie Groups, and Mechanics. III, J. Sov. Math.,19, No. 5 (1982).

  38. L. D. Faddeev and N. Yu. Reshetkhin, “Hamiltonian structures for integrable models of field theory,” Teor. Mat. Fiz.,56, No. 3, 323–343 (1983).

    Google Scholar 

  39. M. A. Semenov-Tyan-Shanskii, “So what is the classical r-matrix,” Funkts. Anal. Prilozhen.,17, No. 4, 17–33 (1983).

    Google Scholar 

  40. A. A. Belavin and V. G. Drinfel'd, “Solutions of the classical Yang-Baxter equation for simple Lie algebras,” Funkts. Anal. Prilozhen.,16, No. 3, 1–29 (1982).

    Google Scholar 

  41. A. A. Belavin and V. G. Drinfeld, “Triangle equations and simple Lie algebras,” Sov. Sci. Rev., Sec. C, 4, 93–165 (1984). Harwood Academic Publishers, Chur (Switzerland), New York.

    Google Scholar 

  42. A. A. Belavin and V. G. Drinfel'd, “Classical Yang-Baxter equation for simple Lie algebras,” Funkts. Anal. Prilozhen.,17, No. 3, 69–70 (1983).

    Google Scholar 

  43. M. A. Semenov-Tian-Shansky, “Dressing transformations and Poisson group actions,” Publ. RIMS Kyoto University,21, No. 6, 1237–1260 (1985).

    Google Scholar 

  44. E. K. Sklyanin, “On complete integrability of the Landau-Lifshitz equation,” LOMI Preprint E-3-1979, Leningrad (1979).

  45. P. P. Kulish and E. K. Sklyanin, “Solutions of the Yang-Baxter equation,” in: Differential Geometry, Lie Groups, and Mechanics. III, J. Sov. Math.,19, No. 5 (1982).

  46. A. A. Belavin, “Discrete groups and integrability of quantum systems,” Funkts. Anal. Prilozhen.,14, No. 4, 18–26 (1980).

    Google Scholar 

  47. G. Andrews, Theory of Partitions [Russian translation], Nauka, Moscow (1982).

    Google Scholar 

  48. P. P. Kulish and N. Yu. Reshetkhin, “Quantum linear problem for the sine-Gordon equation and higher representations,” in: Questions of Quantum Field Theory and Statistical Physics. 2, J. Sov. Math.,23, No. 4 (1983).

  49. E. K. Sklyanin, “An algebra generated by quadratic relations,” Usp. Mat. Nauk,40, No. 2, 214 (1985).

    Google Scholar 

  50. M. Jimbo, “Quantum R-matrix for the generalized Toda system,” Preprint RIMS-506, Kyoto University, 1985.

  51. M. Jimbo, “A q-difference analogue of Ug and the Yang-Baxter equation,” Lett. Math. Phys.,10, 63–69 (1985).

    Google Scholar 

  52. M. Jimbo, “A q-analogue of U(gl(N+1)), Hecke algebra and the Yang-Baxter equation,” Preprint RIMS-517, Kyoto University, 1985.

  53. C. N. Yang, “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction,” Phys. Rev. Lett.,19, No. 23, 1312–1314 (1967).

    Google Scholar 

  54. V. G. Drinfel'd, “New realization of Yangians and quantized affine algebras,” Preprint FTINT AN UkrSSR, No. 30–86, Kharkov (1986).

  55. V. G. Kac, Infinite-Dimensional Lie Algebras, Birkhäuser, Boston-Basel-Stuttgart (1983).

    Google Scholar 

  56. P. Deligne and J. S. Milne, “Tannaka Categories,” in: Hodge Cycles and Motives [Russian translation], Mir, Moscow (1985), pp. 94–201.

    Google Scholar 

  57. V. V. Lyubashenko, “Hopf algebras and symmetries,” Kievsk. Politekh. Inst., Kiev (1985), Dep. RZhMat, 1985, No. 8A447.

  58. R. J. Baxter, “Partition function of the eight-vertex lattice model,” Ann. Phys.,70, 193–228 (1972).

    Google Scholar 

  59. V. E. Korepin, “Analysis of bilinear relations of the six-vertex model,” Dokl. Akad. Nauk SSSR,265, No. 6, 1361–1364 (1982).

    Google Scholar 

  60. V. O. Tarasov, “Structure of quantized L-operators for the L matrix of the XXZ-model,” Teor. Mat. Fiz.,61, No. 2, 163–173 (1984).

    Google Scholar 

  61. V. O. Tarasov, “Irreducible monodromy matrices for the R-matrix of the XXZ-model and lattice local quantum HamiItonians,” Teor. Mat. Fiz.,63, No. 2, 175–196 (1985).

    Google Scholar 

  62. N. Yu. Reshetikhin, “Integrable models of quantum one-dimensional magnetics with O(n) and Sp(2k)-symmetries,” Teor. Mat. Fiz.,63, No. 3, 347–366 (1985).

    Google Scholar 

  63. P. P. Kulish, N. Yu. Reshetikhin, and E. K. Sklyanin, “Yang-Baxter equation and representation theory. I,” Lett. Math. Phys.,5, No. 5, 393–403 (1985).

    Google Scholar 

  64. V. G. Drinfel'd, “Degenerate affine Hecke algebras and Yangians,” Funkts. Anal. Prilozhen.,20, No. 1, 69–70 (1986).

    Google Scholar 

  65. L. A. Takhtadzhyan, “Quantum method of the inverse problem and algebraized matrix Bethe ansatz,” in: Questions of Quantum Field Theory and Statistical Physics, J. Sov. Math.,23, No. 4 (1983).

  66. P. P. Kulish and N. Yu. Reshetikhin, “Generalized Heisenberg ferromagnetics and the Gross-Neveu model,” Zh. Eksp. Teor. Fiz.,80, No. 1, 214–227 (1981).

    Google Scholar 

  67. N. Yu. Reshetikhin, “Method of functional equations in the theory of precisely solvable quantum systems,” Zh. Eksp. Teor. Fiz.,84, No. 3, 1190–1201 (1983).

    Google Scholar 

  68. N. Yu. Reshetikhin, “Exactly solvable quantum mechanical systems on a lattice, connected with classical Lie algebras,” in: Differential Geometry, Lie Groups, and Mechanics. V. J. Sov. Math.,28, No. 4 (1985).

  69. E. K. Sklyanin and L. D. Faddeev, “Quantum-mechanical approach to completely integrable models of field theory,” Dokl. Akad. Nauk SSSR,243, No. 6, 1430–1433 (1978).

    Google Scholar 

  70. E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, “Quantum method of the inverse problem. I,” Teor. Mat. Fiz.,40, No. 2, 194–220 (1979).

    Google Scholar 

  71. L. A. Takhtadzhyan and L. D. Faddeev, “Quantum method of the inverse problem and Heisenberg's XX-model,” Usp. Mat. Nauk,34, No. 5, 13–63 (1979).

    Google Scholar 

  72. L. D. Faddeev, “Quantum completely integrable models in field theory,” Sov. Sci. Rev., Sec. C,1, 107–155 (1980).

    Google Scholar 

  73. P. P. Kulish and E. K. Sklyanin, “Quantum spectral transform method. Recent developments,” in: Integrable Quantum Field Theories (Lecture Notes in Physics, Vol. 151), Springer-Verlag, Berlin-Heidelberg-New York (1982), pp. 61–119.

    Google Scholar 

  74. I. V. Cherednik, “A method of constructing factorized S-matrices in elementary functions,” Teor. Mat. Fiz.,43, No. 1, 117–119 (1980).

    Google Scholar 

  75. A. V. Zamolodchikov and V. A. Fateev, “Model factorized S-matrix and integrable Heisenberg chain with spine. I,” Yad. Fiz.,32, No. 2, 581–590 (1980).

    Google Scholar 

  76. A. G. Izergin and V. E. Korepin, “The inverse scattering approach to the quantum Shabat-Mikhailov model,” Commun. Math. Phys.,79, 303–316 (1981).

    Google Scholar 

  77. V. V. Bazhanov, “Trigonometric solutions of triangle equations and classical Lie algebras,” Preprint IFVE 85-18, Serpukhov (1985).

  78. D. I. Gurevich, “Yang-Baxter equation and generalization of formal Lie theory,” Dokl. Akad. Nauk SSSR,288, No. 4, 797–801 (1986).

    Google Scholar 

Download references

Authors

Additional information

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 155, pp. 18–49, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drinfel'd, V.G. Quantum groups. J Math Sci 41, 898–915 (1988). https://doi.org/10.1007/BF01247086

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01247086

Keywords

Navigation