Skip to main content
Log in

Ductile failure by void nucleation, growth and coalescence

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A wide range of stress states has been generated using axisymmetric and plane strain notched tensile specimens which have been analysed by elastic-plastic finite element analysis. Observations of voids on metallographic sections have been combined with calculated deformation histories and the hole growth equations to determine the local conditions for hole nucleation and the strength of the particle-matrix interface. These calculations show that nucleation is a statistical event for which the radial stress at the particle/matrix interface has been determined. Subsequent calculations give the local conditions at void coalescence in the average material and in statistical inhomogeneities. The statistics of the inclusion distribution determine the size scale over which void coalescence must occur in order to create a crack-like defect.

Résumé

En utilisant des éprouvettes de traction entaillées axisymétriques soumises à état plan de déformation, analysées par éléments finis élasto-plastiques, on a pu élaborer une gamme importante d'états de tension. En combinant les observations de lacunes de section métallographique avec l'histoire des déformations calculées et des équations de croissance d'une cavité, on a déterminé les conditions locales qui président à la croissance de cavité et à la résistance de l'interface particule-matrice. Ces calculs montrent que l'apparition de cavités est un évènement statistique pour lequel la contrainte radiale à l'interface particule-matrice a pû être déterminé. Des calculs subséquents fournissent les conditions locales qui conduisent à la -coalescence de lacunes dans un matériau standard et pour des conditions d'inhomogénéité statistiquement réparties. La statistique de distribution des inclusions détermine l'échelle au delà de laquelle une coalescence de porosités peut se produire et crée un défaut assimilable `a une fissure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

semi-major axis of elliptical void, radius at minimum cross-section of notch tensile specimen

b :

semi-minor axis of elliptical void

E :

uniaxial elastic modulus

e :

matrix strain

H :

aggregate hardening rate

J :

intermediate variable in void equations

K :

intermediate variable in void equations

L :

intermediate variable in void equations

M :

eccentricity of elliptical void

n :

power hardening index

P(x):

probability of nucleation at a radial stress x

r :

distance of void from specimen axis

R :

mean radius of elliptical void, tip radius of notch

s :

matrix stress deviator V volume

ε:

aggregate stress

σ:

matrix stress

ø:

yield function

p:

plastic component

-(overbar):

effective, representative or equivalent value

0:

initial value, initial yield value in uniaxial tension

m:

mean value

y:

current yield value in uniaxial tension

∞:

remote value

References

  1. C.F. Tipper,Metallurgia 39 (1949) 133–137.

    Google Scholar 

  2. S.H. Goods and L.M. Brown,Acta Metallurgica 27 (1979) 1–15.

    Google Scholar 

  3. A.S. Argon, J. Im and R. Safoglu,Metallurgical Transactions 6A (1975) 825–837.

    Google Scholar 

  4. R.D. Thomson and J.W. Hancock,International Journal of Fracture 24 (1984) 209–228.

    Google Scholar 

  5. F.A. McClintock,Transactions of the ASME, Journal of Applied Mechanics 35 (1968) 362–371.

    Google Scholar 

  6. J.R. Rice and D.M. Tracey,Journal of the Mechanics and Physics of Solids 17 (1969) 201–217.

    Google Scholar 

  7. B. Budiansky, J.W. Hutchinson and S. Slutsky, inMechanics of Solids (The Rodney Hill 60th Anniversary Volume) ed. H.G. Hopkins and M.J. Sewell, Pergamon Press, Oxford (1981) 13–45.

    Google Scholar 

  8. J.W. Hancock and A.C. Mackenzie,Journal of the Mechanics and Physics of Solids 24 (1976) 147–169.

    Google Scholar 

  9. R.D. Thomson and J.W. Hancock, inAdvances in Fracture Research (Proceedings of the 5th International Conference on Fracture) ed. D. Francois, Pergamon Press, Oxford (1981) 195–200.

    Google Scholar 

  10. J.W. Rudnicki and J.R. Rice,Journal of the Mechanics and Physics of Solids 23 (1975) 371–394.

    Google Scholar 

  11. C.A. Berg, inInelastic Behaviour of Solids, ed. M.F. Kanninen, W.F. Adler, A.R. Rosenfield, and R.I. Jaffee, McGraw-Hill, New York (1970) 171–210.

    Google Scholar 

  12. A.L. Gurson,Transactions of the ASME, Journal of Engineering Materials and Technology 99 (1977) 2–15.

    Google Scholar 

  13. B. Edelson and W. Baldwin,Transactions of the American Society for Metals 55 (1962) 230–250.

    Google Scholar 

  14. J.R. Rice,Theoretical and Applied Mechanics (Proceedings of the 14th International Congress on Theoretical and Applied Mechanics) ed. W.T. Koiter, North-Holland, Delft (1976) 207–220.

    Google Scholar 

  15. H. Yamamoto,International Journal of Fracture 14 (1978) 347–365.

    Google Scholar 

  16. J.W. Hancock and D.K. Brown,Journal of the Mechanics and Physics of Solids 31 (1983) 1–24.

    Google Scholar 

  17. V. Tvergaard,Journal of the Mechanics and Physics of Solids 30 (1982) 265–286.

    Google Scholar 

  18. J.R. Rice and D.M. Tracey, inNumerical and Computer Methods in Structural Mechanics, Academic Press (1973) 599–601.

  19. R.M. McMeeking and J.R. Rice,International Journal of Solids and Structures 11 (1975) 601–616.

    Google Scholar 

  20. J.C. Nagtegaal, D.M. Parks and J.R. Rice,Computer Methods in Applied Mechanics and Engineering 4 (1974) 153–177.

    Google Scholar 

  21. P.W. Bridgman,Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York (1952) 9.

    Google Scholar 

  22. A. Needleman,Journal of the Mechanics and Physics of Solids 20 (1972) 111–127.

    Google Scholar 

  23. W.H. Chen,International Journal of Solids and Structures 7 (1971) 685–717.

    Google Scholar 

  24. D.M. Norris, B. Moran, J.K. Scudder and D.F. Quinones,Journal of the Mechanics and Physics of Solids 26 (1978) 1–19.

    Google Scholar 

  25. A.C. Mackenzie, J.W. Hancock and D.K. Brown,Engineering Fracture Mechanics 9 (1977) 167–188.

    Google Scholar 

  26. D.K. Brown, J.W. Hancock, R.D. Thomson and D.M. Parks.Numerical Methods in Fracture Mechanics (Proceedings of the 2nd International Conference), eds. R.J. Owen and A.R. Luxmoore, Pineridge Press, Swansea (1980) 309–323.

    Google Scholar 

  27. R.D. Thomson and J.W. Hancock inProceedings of the 6th International Conference on Fracture (1984) to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomson, R.D., Hancock, J.W. Ductile failure by void nucleation, growth and coalescence. Int J Fract 26, 99–112 (1984). https://doi.org/10.1007/BF01157547

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01157547

Keywords

Navigation