Skip to main content
Log in

Thermal effects on the microstructure and mechanical properties of ion implanted ceramics

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of varying the substrate temperature on the implantation-induced structures and surface mechanical properties of single crystal sapphire and MgO have been investigated for a range of 300 keV implanted ions. As the implantation temperature is lowered, the dose at which amorphization occurs is reduced and thus, for the same doses, more amorphous material is produced at lower temperatures. Quantitative modelling shows that the activation energy for annealing of the amorphous material during implantation is very much lower than might be expected for post-implantation thermal annealing of the same material. Also, as the implantation temperature increases there is a small amount of damage annealing in the damaged-but-crystalline material.

Both the microhardness and implantation-induced stresses depend critically on the presence of amorphous material since this is relatively soft and can support only small stresses. However, while the hardness behaviour in the damaged-but-crystalline material is dominated by radiation hardening, the substitutionality, ionic misfit and charge state of the implanted ions have also been found to contribute to the further solid solution component of the hardening produced by ion implantation. These effects are also observed to be temperature dependent. Crazing of the implanted layers has also been reappraised. It has been established that the formation and configuration of crazes is a sensitive function of implantation temperature, and it is now proposed that crazes form in response to the stresses generated as a result of the thermal expansion mismatch between the amorphous layer and the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Burnett andT. F. Page,J. Mater. Sci. 19 (1984) 845–860.

    Google Scholar 

  2. Idem., ibid. 19 (1984) 3524–3545.

    Google Scholar 

  3. Idem., Rad. Eff. 97 (1986) 283–296.

    Google Scholar 

  4. C. J. McHargue, G. C. Farlow, C. W. White, J. M. Williams, B. R. Appleton andH. Naramoto,Mater. Sci. Eng. 69 (1985) 123–127.

    Google Scholar 

  5. C. J. McHargue,Nucl. Instrum. Meth. B19/20 (1987) 797–804.

    Google Scholar 

  6. T. Hioki, A. Itoh, M. Ohkubo, S. Noda, H. Doi, J. Kawamoto andO. Kamigaito,J. Mater. Sci. 21 (1986) 1321–1328.

    Google Scholar 

  7. A. J. Bourdillon, S. J. Bull, P. J. Burnett andT. F. Page,ibid. 21 (1986) 1547–1552.

    Google Scholar 

  8. P. J. Burnett andT. F. Page,ibid. 20 (1985) 4624–4646.

    Google Scholar 

  9. E. P. Eernisse,Appl. Phys. Lett. 18 (1971) 581–583.

    Google Scholar 

  10. P. J. Burnett andT. F. Page,Inst. Phys. (London) Conf. Series,75 (1986) 789–802. (Proc. 2nd Int. Conf. Science of Hard Materials, Rhodes, 1984).

    Google Scholar 

  11. S. J. Bull andT. F. Page,J. Mater. Sci. 23 (1988) 4217–4230.

    Google Scholar 

  12. P. J. Burnett andT. F. Page, in “Plastic Deformation of Ceramic Materials II”, edited by R. C. Bradt and R. E. Tressler (Plenum, New York, 1984) pp. 669–680.

    Google Scholar 

  13. Idem., Mater. Res. Soc. Symp. Proc. 27 (1984) 401–406.

    Google Scholar 

  14. G. Dearnaley, J. H. Freeman, R. S. Nelson andJ. Stephen “Ion Implantation” (North Holland, Amsterdam, 1973).

    Google Scholar 

  15. P. D. Parry,J. Vac. Sci. Technol. 13 (1076) 622–629.

    Google Scholar 

  16. I. Manning andG. P. Mueller,Comput. Phys. Commun. 7 (1974) 85–94.

    Google Scholar 

  17. D. C. Joy, D. E. Newbury andD. L. Davidson,J. Appl. Phys. 53 (1982) R81-R122.

    Google Scholar 

  18. T. F. Page, C. J. McHargue andC. W. White,J. Microsc. (1991) in press.

  19. B. R. Lawn andE. R. Fuller,J. Mater. Sci. 19 (1984) 4061–4067.

    Google Scholar 

  20. G. R. Anstis, P. Chantikul, B. R. Lawn andD. B. Marshall,J. Amer. Ceram. Soc. 64 (1981) 533–538.

    Google Scholar 

  21. F. F. Morehead andB. L. Crowder,Rad. Eff. 6 (1970) 27–32.

    Google Scholar 

  22. J. H. Crawford,Nucl. Instrum. Meth. B1 (1984) 159–165.

    Google Scholar 

  23. J. C. Bourgoin, J. F. Morhange andR. Beserman,Rad. Eff. 22 (1974) 205–208.

    Google Scholar 

  24. H. M. Naguib andR. Kelly,ibid. 26 (1975) 1–12.

    Google Scholar 

  25. L. A. Christel, J. F. Gibbons andT. W. Sigmon,J. Appl. Phys. 52 (1981) 7143–7146.

    Google Scholar 

  26. T. E. Mitchell andA. H. Heuer,Mater. Sci. Eng. 28 (1977) 81–97.

    Google Scholar 

  27. R. C. Weast (ed), “Handbook of Chemistry and Physics” (Chemical Rubber Company Press, Columbus, OH, 1983).

    Google Scholar 

  28. E. M. Levin andH. E. McMurdie, “Phase Diagrams for Ceramists: 1975 Supplement” (American Ceramic Society, Columbus, OH, 1975).

    Google Scholar 

  29. M. K. Loudjani, J. Roy andA. M. Huntz,J. Amer. Ceram. Soc. 68 (1985) 559–562.

    Google Scholar 

  30. H. Naramoto, C. W. White, J. M. Williams, C. J. McHargue, O. W. Holland, M. M. Abraham andB. R. Appleton,J. Appl. Phys. 54 (1983) 683–698.

    Google Scholar 

  31. G. C. Farlow, C. W. White, C. J. McHargue andB. R. Appleton,Mater. Res. Soc. Symp. Proc. 27 (1984) 395–400.

    Google Scholar 

  32. M. M. El-Aiat andF. A. Kroger,J. Amer. Ceram. Soc. 65 (1985) 280–283.

    Google Scholar 

  33. T. I. Kamins andE. S. Meieran,J. Appl. Phys. 44 (1973) 5064–5066.

    Google Scholar 

  34. A. J. Burggraaf, D. Scholten andB. A. vanHas- sel,Nucl. Instrum. Meth. B32 (1988) 32–36.

    Google Scholar 

  35. B. Yates, R. F. Cooper andA. F. Pojur,J. Phys. C 5 (1972) 1046–1058.

    Google Scholar 

  36. D. W. Stacey andD. R. Wilder,J. Amer. Ceram. Soc. 56 (1973) 224.

    Google Scholar 

  37. D. Megaw,Mater. Res. Bull. 6 (1971) 1007–1018.

    Google Scholar 

  38. J. E. Shelby,J. Appl. Phys. 47 (1976) 4489–4496.

    Google Scholar 

  39. T. K. Gupta andJ. Valentich,J. Amer. Ceram. Soc. 54 (1971) 355–356.

    Google Scholar 

  40. S. J. Bull andT. F. Page,Nucl. Instrum. Meth. B32 (1988) 91–95.

    Google Scholar 

  41. B. E. Warren, “X-ray Diffraction” (Addison-Wesley, Reading, MA, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bull, S.J., Page, T.F. Thermal effects on the microstructure and mechanical properties of ion implanted ceramics. J Mater Sci 26, 3086–3106 (1991). https://doi.org/10.1007/BF01124847

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01124847

Keywords

Navigation