Skip to main content
Log in

Cuticular hydrocarbons of eight species of north american cone beetles,Conophthorus hopkins

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

A study to determine the degree of similarity and/or diversity among eight of the 15 described species ofConophthorus is reported. Cuticular hydrocarbons were evaluated forC. conicolens, C. ponderosae, C. cembroides, C. edulis, C. radiatae, C. coniperda, C. resinosae, andC. banksianae. Seventy-eight individual and isomeric mixtures of hydrocarbons were identified by gas chromatography-mass spectrometry, includingn-alkanes, alkenes, alkadienes, 2- or 4-methylalkanes, 3-methylalkanes, and single-component and isomeric mixtures of internally branched mono-, di-, and trimethylalkanes. Differences in alkenes and mono-, di-, and trimethylalkanes can be used easily to separate the eight species.Conophthorus conicolens andC. ponderosae contain the most complex blends. Hydrocarbon patterns in three geographically separated populations ofC. ponderosae, each from a different host, are qualitatively identical with the exception of a homologous series of 3,7-dimethylalkanes from adults collected fromPinus lambertiana cones. The latter could comprise a sibling species. Hydrocarbon mixtures of two eastern species,C. resinosae andC. banksianae, are qualitatively identical, supporting the suspicion thatC. banksianae may not be a valid species. Closely relatedC. cembroides andC. edulis have similar combinations of hydrocarbons except for a unique and abundant alkene (C27∶1) inC. edulis and two dimethyhexacosanes inC. cembriodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Blailock, T.T., Blomquist, G.J., andJackson, L.L. 1976. Biosynthesis of 2-methylalkanes in the cricketsNemobius fasciatus andGryllus pennsylvanicus.Biochem. Biophys. Res. Commun. 68:841–849.

    Google Scholar 

  • Blomquist, G.J., andJackson, L.L. 1973. Incorporation of labelled dietaryn-alkanes into the cuticular lipids of the grasshopperMelanoplus sanquinipes.J. Insect Physiol. 19:1639–1647.

    Google Scholar 

  • Blomquist, G.J., Nelson, D.R., andde Renobales, M. 1987. Chemistry, biochemistry, and physiology of insect cuticular lipids.Arch. Insect Biochem. Physiol. 6:227–265.

    Google Scholar 

  • Carlson, D.A., andBolten, A.B. 1984. Identification of africanized and european honey bees, using extracted hydrocarbons.Bull. Entomol. Soc. Am. 30:32–35.

    Google Scholar 

  • Flores, J.L., andBright, D.E. 1987. A new species ofConophthorus from Mexico: Descriptions and biological notes (Coleoptera: Scolytidae).Coleopterists Bull. 41:181–184.

    Google Scholar 

  • Furniss, R.L., andCarolin, V.M. 1977. Western Forest Insects.U.S. Dept. Agric. Misc. Publ. No. 1339. 654 pp.

  • Gastner, J.L., andNation, J.L. 1986. Cuticular lipids for species recognition of mole crickets (Orthoptera: Gryllotalpidae): II.Scapteriscus abbreviatus, S. acletus, S. vicinus, S. sp. andNeocurtilla hexadactyla.Arch. Insect Biochem. Physiol. 3:126–134.

    Google Scholar 

  • Haverty, M.I., andThorne, B.L. 1989. Agonistic behavior correlated with hydrocarbon phenotypes in dampwood termites,Zootermopsis (Isoptera: Termopsidae).J. Insect Behav. 2:223–243.

    Google Scholar 

  • Haverty, M.I., Page, M., Nelson, L.J., andBlomquist, G.J. 1988. Cuticular hydrocarbons of dampwood termites,Zootermopsis: Intra- and intercolony variation and potential as taxonomic characters.J. Chem. Ecol. 14:1035–1058.

    Google Scholar 

  • Hedlin, A.F.,Yates, H.O., III,Tovar, D.C.,Ebel, B.H.,Koerber, T.K., andMerkel, E.P. 1980. Cone and seed insects of North American conifers. Canadian Forestry Service. 122 pp.

  • Howard, R.W., andBlomquist, G.J. 1982. Chemical ecology and biochemistry of insect hydrocarbons.Annu. Rev. Entomol. 27:149–172.

    Google Scholar 

  • Howard, R.W., McDaniel, C.A., Nelson, D.R., Blomquist, G.J., Gelbaum, L.T., andZalkow, L.H. 1982. Cuticular hydrocarbons as possible species and caste-recognition cues inReticulitermes sp.J. Chem. Ecol. 8:1227–1239.

    Google Scholar 

  • Howard, R.W., Thorne, B.L., Levtngs, S.C., andMcDaniel, C.A. 1988. Cuticular hydrocarbons as chemotaxonomic characters forNasutitermes corniger (Motschulsky) andN. ephratae (Holmgren) (Isoptera: Termitidae).Ann. Entomol. Soc. Am. 81:395–399.

    Google Scholar 

  • Jackson, L.L., andBlomquist, G.J. 1976. Insect waxes, pp. 201–233,in P.E. Kolattududy (ed.). Chemistry and Biochemistry of Natural Waxes. Elsevier, Amsterdam.

    Google Scholar 

  • Lockey, K.H. 1981. Cuticular hydrocarbons of adultCylindrinotus laevioctostriatus (Goeze) andPhylan gibbus (Fabricius) (Coleoptera: Tenebrionidae).Insect Biochem. 11:549–561.

    Google Scholar 

  • Lockey, K.H. 1982. Hydrocarbons of adultOnymacris plana (Peringuey) andOnymacris rugatipennis (Haag) (Coleoptera: Tenebrionidae).Insect Biochem. 12:69–81.

    Google Scholar 

  • Nelson, D.R. 1978. Long-chained methyl-branched hydrocarbons: Occurrence, biosynthesis, and function.Adv. Insect Physiol. 13:1–33.

    Google Scholar 

  • Nelson, D.R., andCarlson, D.A. 1986. Cuticular hydrocarbons of the tsetse fliesGlossina morsitans morsitans, G. austeni andG. pallidipes.Insect Biochem. 16:403–416.

    Google Scholar 

  • Nelson, D.R., andSukkestad, D.R. 1970. Normal and branched aliphatic hydrocarbons from the eggs of the tobacco hornworm.Biochemistry 9:4601–4611.

    Google Scholar 

  • Nelson, D.R., Sukkestad, D.R., andTerranova, A.C. 1971. Hydrocarbon composition of the integument, fat body, hemolymph and diet of the tobacco hornworm.Life Sci. 10:411–419.

    Google Scholar 

  • Nelson, D.R., Sukkestad, D.R., andZaylskie, R.G. 1972. Mass spectra of methyl-branched hydrocarbons from eggs of the tobacco hornworm.J. Lipid Res. 13:413–421.

    Google Scholar 

  • Pomonis, J.G., Fatland, C.L., Nelson, D.R., andZaylskie, R.G. 1978. Insect hydrocarbons. Corroboration of structure by synthesis and mass spectrometry of mono- and dimethylalkanes.J. Chem. Ecol. 4:27–39.

    Google Scholar 

  • Thorne, B.L., andHaverty, M.I. 1989. Accurate identification ofZootermposis species (Isoptera: Termposidae) based on a mandibular character of non-soldier castes.Ann. Entomol. Soc. Am. 82:262–266.

    Google Scholar 

  • Vander Meer, R.K. 1986, Chemical taxonomy as a tool for separatingSolenopsis sp., pp. 316–326,in C.F. Lofgren, R.K. Vander Meer (eds.). Fire Ants and Leaf Cutting Ants: Biology and Management. Westview Press, Boulder, Colorado.

    Google Scholar 

  • Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph.Great Basin Nat. Mem. 6:1359 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Coleoptera: Scolytidae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, M., Nelson, L.J., Haverty, M.I. et al. Cuticular hydrocarbons of eight species of north american cone beetles,Conophthorus hopkins. J Chem Ecol 16, 1173–1198 (1990). https://doi.org/10.1007/BF01021018

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01021018

Key words

Navigation