Skip to main content
Log in

ThechlL (frxC) gene: Phylogenetic distribution in vascular plants and DNA sequence fromPolystichum acrostichoides (Pteridophyta) andSynechococcus sp. 7002 (Cyanobacteria)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

We examinedchlL (frxC) gene evolution using several approaches. Sequences from the chloroplast genome of the fernPolystichum acrostichoides and from the cyanobacteriumSynechococcus sp. 7002 were determined and found to be highly conserved. A complete physical map of the fern chloroplast genome and partial maps of other vascular plant taxa show thatchlL is located primarily in the small single copy region as inMarchantia polymorpha. A survey of a wide variety of non-angiospermous vascular plant DNAs shows thatchlL is widely distributed but has been lost in the pteridophytePsilotum and (presumably independently) within the Gnetalean gymnosperms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamson, H., Packer, N., 1984: Dark synthesis of chlorophyll in vivo and dark reduction of protochlorophyllide in vitro by pea chloroplasts. — InJunk, W., (Ed.): Protochlorophyllide reduction and greening, pp. 353–363. — The Hague, Boston, Lancaster: Martinus Nijhoff.

    Google Scholar 

  • Bogdanović, M., 1973: Chlorophyll formation in the dark. I. Chlorophyll in pine seedlings. — Physiol. Plant.29: 17–18.

    Google Scholar 

  • Brutlag, D. L., Dautricourt, J. P., Maulik, S., Relph, J., 1990: Improved sensitivity of biological sequence database searches. — Computer Applic. Biosci.6: 237–245.

    Google Scholar 

  • Burke-Aquero, D. H., 1992: Molecular genetic and molecular evolutionary studies on the bacteriochlorophyll synthesis gene ofRhodobacter capsulatus. — Ph. D. Thesis. Berkeley, CA: University of California.

    Google Scholar 

  • Burke, D. H., Alberti, M., Hearst, J. E., 1993a: TheRhodobacter capsulatus chlorin reductase encoding locus,bchA, consists of three genes,bch x,bch Y, andbch Z. — J. Bacteriol.175: 2407–2413.

    Google Scholar 

  • ,, , 1993b:bchFNBH bacteriochlorophyll synthesis genes ofRhodobacter capsulatus and identification of the third subunit of light-independent protochlorophyllide reductase in bacteria and plants. — J. Bacteriol.175: 2414–2432.

    Google Scholar 

  • ,, 1991: Chlorophyll Fe proteins and other chlorophyll synthesis genes fromRhodobacter capsulatus to higher plants (abstr). — Photochem. Photobiol. (Suppl)53: 85S-86S.

    Google Scholar 

  • -Hearst, J. E., Sidow, A., 1993c: Early evolution of photosynthesis: clues from nitrogenase and from the chlorophyll iron proteins. — Proc. Natl. Acad. Sci. (in press).

  • Castelfranco, P. A., Beale, S. I., 1983: Chlorophyll biosynthesis: recent advances and areas of current interest. — Ann. Rev. Pl. Physiol.34: 241–278.

    Google Scholar 

  • Choquet, Y., Rahire, M., Girard-Bascou, J., Erickson, J., Rochaix, J.-D., 1992: A chloroplast gene is required for the light-independent accumulation of chlorophyll inChlamydomonas reinhardtii. — EMBO J11: 1697–1704.

    Google Scholar 

  • Compton, T., 1990: Degenerate primers for DNA amplification. — In PCR protocols: a guide to methods and applications, pp. 39–45. — San Diego, CA: Academic Press.

    Google Scholar 

  • Crane, P. S., 1985: Phylogenetic analysis of seed plants and the origin of angiosperms. — Ann. Missouri Bot. Gard.72: 716–793.

    Google Scholar 

  • Darrah, M., Kay, S. A., Teakle, G. R., Griffiths, W. T., 1990: Cloning and sequencing of protochlorophyllide reductase. — Biochem. J.265: 789–798.

    Google Scholar 

  • Doyle, J. A., Donoghue, M. J., 1986: Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. — Bot. Rev.52: 321–431.

    Google Scholar 

  • Ford, C., Wang, W.-Y., 1980a: Three newyellow loci inChlamydomonas reinhardtii. — Mol. Gen. Genet.179: 259–263.

    Google Scholar 

  • ,, 1980b: Temperature-sensitiveyellow mutants ofChlamydomonas reinhardtii. — Mol. Gen. Genet.180: 5–10.

    Google Scholar 

  • Fujita, Y., Takahashi, Y., Chunganji, M., Matsubara, H., 1992: ThenifH-likefrxC gene is involved in the biosynthesis of chlorophyll in the filamentous cyanobacteriumPlectonema boryanum. — Pl. Cell Physiol.33: 81–92.

    Google Scholar 

  • ,, 1989: Identification of a novelnifH-likefrxC protein in chloroplasts of the liverwortMarchantia polymorpha. — Pl. Mol. Biol.13: 551–561.

    Google Scholar 

  • Gold, L., Stromo, G., 1987: Translational initiation. — InNeidhardt, F. C., (Ed.): Cellular and molecular biology ofEscherichia coli andSalmonella typhimurium, pp. 1302–1307. — Washington, D.C.: American Society of Microbiology.

    Google Scholar 

  • Griffiths, W. T., 1991: Protochlorophyllide photoreduction. — InScheer, H., (Ed.): Chlorophylls, pp. 433–450. — Boca Ratón, CRC Press.

    Google Scholar 

  • Hamby, R. K., Zimmer, E. A., 1991: Ribosomal RNA as a phylogenetic tool in plant systematics. — InSoltis, P. S., Soltis, D. E., Doyle, J. J., (Eds): Molecular systematics of plants, pp. 50–91. — New York: Chapman & Hall.

    Google Scholar 

  • Hearst, J. E., Alberti, M., Doolittle, R. F., 1985: A putative nitrogenase reductase gene found in the nucleotide sequence from the photosynthetic gene cluster ofR. capsulata. — Cell40: 219–220.

    Google Scholar 

  • Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sukamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C. R., Meng, B. Y., 1989: The complete sequence of the riceOryza sativa chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. — Mol. Gen. Genet.217: 185–194.

    Google Scholar 

  • Lidholm, J., Gustafsson, P., 1991: Homologs of the green algalgidA gene and the liverwortfrxC gene are present on the chloroplast genomes of conifers. — Pl. Mol. Biol.17: 787–798.

    Google Scholar 

  • Madigan, M. D., Guest, H., 1978: Growth of a photosynthetic bacterium anaerobically in darkness, supported by oxidant-dependent sugar fermentation. — Arch. Microbiol.117: 119–122.

    Google Scholar 

  • Meyer, J., 1988: The evolution of ferredoxins. — Trends Evol. Ecol.3: 222–226.

    Google Scholar 

  • Ogura, Y., Takemura, M., Oda, K., Yamato, K., Ohta, E., Fukuzawa, H., Ohyama, K., 1992: Cloning and nucleotide sequence of afrxC-ORF 469 gene cluster ofSynechocystis PCC 6803—Conservation with liverwort chloroplastfrxC—ORF 465 andnif operon. — Biosci. Biotech. Biochem.56: 788–793.

    Google Scholar 

  • Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, T., Takeuchi, M., Chang, Z., Aota, S.-T., Inokuchi, H., Ozeki, H., 1986: Chloroplast gene organization deduced from complete sequence of liverwortMarchantia polymorpha chloroplast DNA. — Nature (London)322: 572–574.

    Google Scholar 

  • Olmstead, R., Palmer, J. D., 1992: A chloroplast DNA phylogeny of theSolanaceae: Subfamilial relationships and character evolution. — Ann. Missouri Bot. Gard.79: 346–360.

    Google Scholar 

  • Palmer, J. D., 1986: Isolation and structural analysis of chloroplast DNA. — Meth. Enzym.118: 167–186.

    Google Scholar 

  • Raubeson, L. A., 1991: Structural variation in the chloroplast genome of vascular plants. — Ph. D. Thesis. New Haven, CT: Yale University.

    Google Scholar 

  • Roitgrund, C., Mets, T., 1990: Localization of two novel chloroplast genome functions: trans-splicing of RNA and protochlorophyllide reduction. — Curr. Genet.17: 147–153.

    Google Scholar 

  • Sambrook, J., Fritsch, E. F., Maniatis, T., 1989: Molecular cloning, a laboratory manual. 2nd edn. — Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Sanger, F., Nicklen, S., Coulson, A. R., 1977: DNA sequencing with chain-terminating inhibitors. — Proc. Natl. Acad. Sci. USA74: 5463–5467.

    Google Scholar 

  • Schultz, R., Steinmüller, K., Klass, M., Forreiter, C., Rasmussen, S., Hiller, C., Apel, K., 1989: Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barleyHordeum vulgare L. and its expression inEscherichia coli. — Mol. Gen. Genet.217: 355–361.

    Google Scholar 

  • Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Yamaguchi-Shinozaki, K., Ohto, C., Totazawa, K., Obokata, J., Meng, B. Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H., Sugiura, M., 1986: The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. — EMBO J.5: 2043–2049.

    Google Scholar 

  • Stein, D. B., 1993: Isolating and comparing nucleic acids from land plants: nuclear and other organellar genes. — Meth. Enzym.244: 153–167.

    Google Scholar 

  • , 1992: Structural rearrangements of the chloroplast genome provide an important phylogenetic link in ferns. — Proc. Natl. Acad. Sci. USA89: 1856–1860.

    Google Scholar 

  • Suzuki, J., Bauer, C. E., 1992: Light-independent chlorophyll biosynthesis: Involvement of the chloroplast gene,chlL. — Pl. Cell4: 929–940.

    Google Scholar 

  • Yamada, K., Matsuda, M., Fujita, Y., Matsubara, H., Sugai, M., 1992: AfrxC homolog exists in the chloroplast DNAs from various pteridophytes and in gymnopserms. — Pl. Cell Physiol.33: 325–327.

    Google Scholar 

  • Yang, Z., Bauer, C., 1990:Rhodobacter capsulatus genes involved in early steps of the bacteriochlorophyll biosynthesis pathway. — J. Bact.172: 5001–5010.

    Google Scholar 

  • Yen, H.-C., Marrs, B., 1977: Growth ofRhodopseudomonas capsulata under anaerobic dark conditions with dimethyl sulfoxide. — Arch. Biochem. Biophys.181: 411–418.

    Google Scholar 

  • Youvan, D. C., Bylina, E. J., Alberti, M., Begush, H., Hearst, J. E., 1984: Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B 870 antenna, and flanking polypeptides fromR. capsulata. — Cell37: 949–957.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The namefrxC was originally used to denote a gene encoding a product with probable Fe : S cluster binding activity. This activity was postulated due to the amino acid sequence similarity between this product and the Fe : S-binding nitrogenase iron proteinnifH. Fe : S-binding is a property shared by ferredoxins, which are denoted by the prefix “frx”. However, this gene does not encode a ferredoxin. It is much larger than any known ferredoxin, it binds its Fe : S cluster between two halves of a homodimer (Fujita & al. 1989,Burke & al. 1993 a, c) instead of within a single subunit, and it lacks the pattern of clustered cysteines present in all ferredoxins (Meyer 1988). Therefore, we use the namechlL to recognize the sequence and functional similarities to the bacterial PChlide reductase subunit,bchL. Similar usage has been adopted for this (Suzuki & Bauer 1992) and other (Choquet & al. 1992,Burke & al. 1993b) PChlide reductase subunits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, D.H., Raubeson, L.A., Alberti, M. et al. ThechlL (frxC) gene: Phylogenetic distribution in vascular plants and DNA sequence fromPolystichum acrostichoides (Pteridophyta) andSynechococcus sp. 7002 (Cyanobacteria). Pl Syst Evol 187, 89–102 (1993). https://doi.org/10.1007/BF00994092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00994092

Key words

Navigation