Skip to main content
Log in

The role of iridoid glycosides in host-plant specificity of checkerspot butterflies

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The potential role of iridoid glycosides as feeding stimulants forEuphydryas chalcedona larvae was examined in three laboratory experiments. The first experiment examined larval behavior in choice tests between an artificial diet with no additives (AD) and an artificial diet with the iridoid glycoside, catalpol, added (AD + I) in one group; and AD and AD plus a crude extract from which the iridoid glycoside catalpol was crystallized (AD + Ex) in the second group. The larvae were found more often on AD + I or AD + Ex. The second experiment quantified larval consumption of artificial diets when given a choice of AD or AD + I, and AD or AD + Ex, and showed that larvae ate significantly more AD + I or AD + Ex than AD. The third experiment compared growth and survival on six diets: AD; AD + I; artificial diet with dried, ground upScrophularia californica leaves (AD + S); artificial diet with dried, ground upPlantago lanceolata leaves (AD + P);S. californica leaves (S); andP. lanceolata leaves (P). Growth was best onS. californica leaves, and survival was highest onS. californica andP. lanceolata leaves. There were no differences in growth rate or survival between AD andAD + I. Thus, iridoid glycosides serve as feeding attractants and stimulants for larvae ofEuphydryas chalcedona and are suggested as the basis of radiation in butterflies of the genusEuphydryas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdusamatov, A., andYusunov, S.Y. 1971. Pediculinine: A new alkaloid fromPedicularis olgae.Khim. Prir. Soedin. 7:306–309 (Chem. Abst.).

    Google Scholar 

  • Bernays, E., andDeLuca C. 1981. Insect anti-feedant properties of an iridoid glycoside: Ipolamiide.Experientia 37:1289–1290.

    Google Scholar 

  • Bobbitt, J.M., andSegebarth, K.P. 1969. Iridoid glycosides and similar substances, pp. 1–145,in W.I. Taylor and A.R. Battersby (eds.). Cyclopentanoid Terpene Derivatives. Marcel Dekker Inc., New York.

    Google Scholar 

  • Bowe, J.J. 1972. Another larval foodplant forEuphydryas phaeton (Drury) (Nymphalidae).J. Lepid. Soc. 26:122.

    Google Scholar 

  • Bowers, M.D. 1980. Unpalatability as a defense strategy ofEuphydryas phaeton (Lepidoptera: Nymphalidae).Evolution 34:586–600.

    Google Scholar 

  • Bowers, M.D. 1981. Unpalatability as a defense strategy of western checkerspot butterflies (Euphydryas Scudder, Nymphalidae).Evolution 35:367–375.

    Google Scholar 

  • Brower, L.P., andBrower, J.V.Z. 1964. Birds, butterflies and plant poisons: A study in ecological chemistry.Zoologica 49:137–159.

    Google Scholar 

  • Brown, I.L., andEhrlich, P.R. 1980. Population biology of the checkerspot butterfly,Euphydryas chakedona: Structure of the Jasper Ridge colony. Oecologia 47:239–251.

    Google Scholar 

  • Chew, F.S. 1977. Coevolution of pierid butterflies and their cruciferous foodplants. II. Distribution of eggs on potential foodplants.Evolution 31:568–579.

    Google Scholar 

  • Chew, F.S. 1980. Foodplant preferences ofPieris caterpillars (Lepidoptera).Oecologia 46:347–353.

    Google Scholar 

  • Clark, A.H. 1927. Notes on the melitaeid butterflyEuphydryas phaeton (Drury) with descriptions of a new subspecies and a new variety.Proc. U.S. Natl. Mus. Wash. 71 (article no. 2683), 1–22.

    Google Scholar 

  • Cullenward, M.J., Ehrlich, P.R., White, R.R., andHoldren, C.E. 1979. The ecology and population genetics of an alpine checkerspot butterfly,Euphydryas anicia.Oecologia 38:1–12.

    Google Scholar 

  • David, W.A.L., andGardner, B.O.C. 1966a. The effect of sinigrin on the feeding ofPieris brassicae L.: Larvae transferred from various diets.Entomol. Exp. Appl. 9:95–98.

    Google Scholar 

  • David, W.A.L., andGardner, B.O.C. 1966b. Mustard oil glucosides as feeding stimulants forPieris brassicae larvae in a semi-synthetic diet.Entomol. Exp. Appl. 9:247–255.

    Google Scholar 

  • Dethier, V.G. 1941. Chemical factors determining the choice of food plants byPapilio larvae.Am. Nat. 75:61–73.

    Google Scholar 

  • Dethier, V.G. 1947. Chemical Insect Attractants and Repellents. Blakiston Co., New York.

    Google Scholar 

  • Dethier, V.G. 1954. Evolution of feeding preferences in phytophagous insects.Evolution 8:33–54.

    Google Scholar 

  • Dethier, V.G. 1973. Electrophysiological studies of gustation in lepidopterous larvae II. Taste spectra in relation to food plant discrimination.J. Comp. Physiol. 82:103–134.

    Google Scholar 

  • Duff, R.B., Bacon, J.S.D., Mundie, C.M., Farmer, V.C., Russell, J.D., andForrester, A.R. 1965. Catalpol and methyl catalpol: Naturally occurring glycosides inPlantago andBuddleia species.Biochem. J. 96:1–5.

    Google Scholar 

  • Ehrlich, P.R., andRaven, P.H. 1964. Butterflies and plants: A study in coevolution.Evolution 18:586–608.

    Google Scholar 

  • Ehrlich, P.R., White, R., Singer, M.C., McKechnie, W.W., andGilbert, L.G. 1975. Checkerspot butterflies: A historical perspective.Science 188:221–228.

    Google Scholar 

  • Feeny, P.P. 1975. Biochemical coevolution between plants and their insect herbivores, pp. 3–19,in L.E. Gilbert and P.H. Raven (eds.). Coevolution of Animals and Plants. Universtiy of Texas Press, Austin.

    Google Scholar 

  • Fraenkel, G. 1959. The raison d'etre of secondary plant substances.Science 129:1466–1470.

    Google Scholar 

  • Fraenkel, G. 1969. Evaluation of our thoughts on secondary plant substances.Entomol. Exp. Appl. 12:473–486.

    Google Scholar 

  • Harbourne, J.B. 1973. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. Chapman and Hall, London.

    Google Scholar 

  • Higgins, L.G., andRiley, N.D. 1980. A Field Guide to the Butterflies of Britain and Europe. Collins, London.

    Google Scholar 

  • Jensen, S.R., Nielsen, B.J., andDahlgren, R. 1975. Iridoid compounds, their occurrence and systematic importance in the angiosperms. Bot. Not. 128:148–180.

    Google Scholar 

  • Jermy, T., Hanson, F.E., andDethier, V.G. 1968. Induction of specific foodplant preference in lepidoptrous larvae.Entomol. Exp. Appl. 11:211–230.

    Google Scholar 

  • Jirawongse, V. 1964. A chemotaxonomic study of the Scrophulariaceae. PhD thesis, Purdue University, University Microfilms, Inc.

  • Klots, A.B. 1958. A Field Guide to the Butterflies. Houghton Mifflin Co., Boston.

    Google Scholar 

  • Kooiman, P. 1970. The occurrence of iridoid glycosides in the Scrophulariaceae.Acta Bot. Neerl. 19:329–340.

    Google Scholar 

  • Lincoln, D.E. 1980. Leaf resin flavonoids ofDiplacus aurantiacus.Biochem. Syst. Ecol. 8:397–400.

    Google Scholar 

  • Lincoln, D.E., Newton, T.S., Ehrlich, P.R., andWilliams, K.S. 1982. Coevolution of the checkerspot butterflyEuphydryas chalcedona and its larval food plantDiplacus aurantiacus: Larval response to protein and leaf resin.Oecologia 52:216–223.

    Google Scholar 

  • Lutfullin, K.L., Yuldashev, P.K., andUnosov, S.Y. 1965. Investigation of the alkaloids ofPedicularis olgae: Structure of plantagonine and indicaine.Khim. Prir. Soedin. Akad. Nauk. USSR 1965(5):365–366.

    Google Scholar 

  • Ma, W.C., andKubo, I. 1977. Phagostimulants forSpodoptera exempta: Identification of adenosine fromZea mays.Entomol. Exp. Appl. 22:107–112.

    Google Scholar 

  • Masters, J.H. 1968.Euphydryas phaeton in the Ozarks.Entomol. News 79:85–91.

    Google Scholar 

  • Morrison, P.D.,Williams, K.S.,Lincoln, D.E., andEhrlich, P.R. 1983. The use of an artificial diet for evaluating larval-hostplant relations ofEuphydryas colon (Nymphalidae). Submitted.

  • Nayar, J.K., andFraenkel, G. 1963. The chemical basis of host selection in the catalpa sphinx,Ceratomia catalpae (Lepidoptera: Sphingidae).Ann. Entomol. Soc. Am. 56:119–122.

    Google Scholar 

  • Rausher, M.D. 1982. Population differentiation inEuphydryas editha butterflies: larval adaptation to different hosts.Evolution 36:581–590.

    Google Scholar 

  • Rodman, J.E., andChew, F.S. 1980. Phytochemical correlates of herbivory in a community of native and naturalized Cruciferae.Biochem. Syst. Ecol. 8:43–50.

    Google Scholar 

  • Schoonhoven, L.M. 1972. Secondary plant substances and insects, pp. 197–224,in V.C. Runeckles and T.C. Tso (eds.). Recent Advances in Phytochemistry, Vol. 5. Academic Press, New York.

    Google Scholar 

  • Sevastopolo, D.G. 1964. Lepidoptera ovipositing on plants toxic to their larvae.J. Lepid. Soc. 18:104.

    Google Scholar 

  • Singer, M.C. 1971. Evolution of food-plant preference in the butterflyEuphydryas editha.Evolution 25:383–389.

    Google Scholar 

  • Singer, M.C. 1982. Quantification of host specificity by manipulation of oviposition behavior in the butterflyEuphydryas editha.Oecologia 52:224–229.

    Google Scholar 

  • Singer, M.C., andEhrlich, P.R. 1979. Population dynamics of the checkerspot butterflyEuphydryas editha.Fortschr. Zool. 25:53–60.

    Google Scholar 

  • Sokal, R.R., andRohlf, F.J. 1969. Biometry. Freeman, San Francisco.

    Google Scholar 

  • Souzu, I., andMitsuhashi, H. 1969. Structures of iridoids fromLonicera morrowii.Tetrahedron Lett. 32:2725–2728.

    Google Scholar 

  • Stanton, M.L. 1979. The role of chemotactile stimuli in the oviposition preferences ofColias butterflies.Oecologia 39:79–91.

    Google Scholar 

  • Straatman, R. 1962. Notes on certain Lepidoptera ovipositing on plants which are toxic to their larvae.J. Lepid. Soc. 16:99–103.

    Google Scholar 

  • Tabashnik, B.E., Wheelock, H., Rainbolt, J.D., andWatt, W.B. 1981. Individual variation in oviposition preference in the butterfly,Colias eurytheme.Oecologia 50:225–230.

    Google Scholar 

  • Takino, Y., Koshioka, M., Kawaguchi, M., Miyahara, T., Tanizawa, H., Ishii, Y., Higashino, M., andHayashi, T. 1980. Quantitative determination of bitter components in gentianaceous plants.Planta Med. 38:344–350.

    Google Scholar 

  • Tietz, H.M. 1972. An Index to the Life Histories of the North American Macrolepidoptera, Allyn Museum of Entomology, Sarasota, Florida.

    Google Scholar 

  • Torsell, K. 1968. The structures of alkaloids fromPedicularis olgae Regel (Scrophulariaceae) andPlantago indica (P. ramosa) (Plantaginaceae).Acta Chem. Scand. 22:2715–2716.

    Google Scholar 

  • Trim, A.R., andHill, R. 1952. The preparation and properties of aucubin, asperuloside and some related glycosides.Biochem. J. 50:310–319.

    Google Scholar 

  • Vershaffelt, E. 1911. The cause determining the selection of food in some herbivorous insects.Proc. Sci. Kon. Akad. Wet. Amsterdam 13:536–542.

    Google Scholar 

  • Waldbauer, G.P. 1968. The consumption and utilization of food by insects.Recent Adv. Insect Physiol. 5:229–288.

    Google Scholar 

  • Wieffering, J.H. 1966. Aucubinartige Glucoside (Pseudoindikane) und verwandte Heteroside als systematische Merkmale.Phytochemistry 5:1053–1064.

    Google Scholar 

  • Wiklund, D. 1981. Generalist vs. specialist oviposition behavior inPapilio machaon (Lepidoptera) and functional aspects on the hierarchy of oviposition preferences.Oikos 36:163–170.

    Google Scholar 

  • Williams, E.W.,Holdren, C., andEhrlich, P.R. 1983. The life history and ecology ofEuphydryas gilletii Barnes (Nymphalidae). In preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowers, M.D. The role of iridoid glycosides in host-plant specificity of checkerspot butterflies. J Chem Ecol 9, 475–493 (1983). https://doi.org/10.1007/BF00990220

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00990220

Key words

Navigation