Skip to main content
Log in

Selective odor perception in the soil collembolaOnychiurus armatus

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The olfactorial response of the fungivorous soil collembolanOnychiurus armatus was examined in a bioassay covering volatile compounds identified in the odor blends of two of its preferred fungal speciesMonierella isabellina andVerticillium bulbillosum. The odor of the fungi was trapped using activated carbon filters, extracted with diethyl ether, and subjected to GC-MS analysis. About 50% of the compounds resolved by GC were identified by a combination of electron impact and chemical ionization mass spectrometry. In a Y-shaped olfactometer the collembolans were attracted to a variety of common odors, such as CO2 and 2-methyl-1-propanol, and a species-specific odor, such as 1-heptene, and arrested by, for example, decanal and 2-octene. The response was not improved by pairwise combinations of common and specific odors. An amount of 0.5 ng of ethyl acetate or 3 pg of 1-pentanol was sufficient to attract the collembolans. The specific compounds ofV. bulbillosum, 1-heptene and 1-octen-3-ol, may be key stimuli explaining whyO. armatus prefersV. bulbillosum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balan, J. 1985. Measuring minimal concentrations of attractants detected by the nematodePanagrellus redivivus.J. Chem. Ecol. 11:105–111.

    Google Scholar 

  • Barton Browne, L. 1977. Host-related responses and their suppression: Some behavioural considerations, pp. 117–127,in H.H. Shorey, and J.J. McKelvey, Jr. (eds.). Chemical Control of Insect Behaviour: Theory and Application. Wiley-Interscience, London.

    Google Scholar 

  • Bengtsson, G., Ohlsson, L., andRundgren, S. 1985. Influence of fungi on growth and survival ofOnychiurus armatus (Collembola) in a metal polluted soil.Oecologia (Berlin) 68:63–68.

    Google Scholar 

  • Bengtsson, G., Erlandsson, A., andRundgren, S. 1988. Fungal odour attracts soil Collembola.Soil Biol. Biochem. 20:25–30.

    Google Scholar 

  • Chapman, R.F. 1988. Sensory aspects of host-plant recognition by Acridoidea: Questions associated with the multiplicity of receptors and variability of response.J. Insect Physiol. 34:167–174.

    Google Scholar 

  • Dethier, V.G. 1947. Chemical Insect Attractants and Repellents. Lewis and Co. Ltd., London.

    Google Scholar 

  • Gisin, H. 1960. Collembolenfauna Europas. Museum d'Histoire Naturelle, Geneva.

    Google Scholar 

  • Hoffmann, A.A., andParsons, P.A. 1984. Olfactory response and resource utilization inDrosophila: Interspecific comparisons.Biol. J. Linn. Soc. 22:43–53.

    Google Scholar 

  • Hogge, L.R., andOlson, D.J.H. 1982. Detection of trace quantities of aliphatic alcohols using derivatization techniques suitable for positive and/or negative ion gas chromatography/chemical ionization mass spectrometry.J. Chromatogr. Sci. 20:109–113.

    Google Scholar 

  • Kaminski, E., Stawicki, S., andWasowicz, E. 1974. Volatile flavor compounds produced by molds ofAspergillus, Penicillium andFungi imperfecti.Appl. Microbiol. 27:1001–1004.

    Google Scholar 

  • Kana, K., Kanellaki, M., Kouinis, J., andKoutinas, A.A. 1988. Alcohol production from raisin extracts: volatile by-products.J. Food Sci. 53:1723–1724 and 1749.

    Google Scholar 

  • Karahadian, C., Josephson, D.B., andLindsay, R.C. 1985. Volatile compounds fromPenicillium sp. contributing musty-earthy notes to Brie and Camembert cheese flavors.J. Agric. Food. Chem. 33:339–343.

    Google Scholar 

  • Klinger, J. 1965. On the orientation of plant nematodes and some other soil animals.Nematologica 11:4–18.

    Google Scholar 

  • Labows, J.N., McGinley, K.J., Leyden, J.J., andWebster, G.F. 1979. Characteristic γ-lactone odor production of the genusPityrosporum.Appl. Environ. Microbiol. 38:412–415.

    PubMed  Google Scholar 

  • Leonard, M.A. 1984. Observations on the influence of culture conditions of the fungal feeding preferences ofFolsomia Candida (Collembola: Isotomidae).Pedobiologia 26:361–367.

    Google Scholar 

  • Miller, J.R. andStrickler, K.L. 1984. Finding and accepting host plants, pp. 127–157,in W.J. Bell, and R.T. Cardé (eds.). Chemical Ecology of Insects. Chapman & Hall, New York.

    Google Scholar 

  • Moursi, A.A. 1962. The attractiviness of CO2 and N2 to soil Arthropoda.Pedobiologia 1:299–302.

    Google Scholar 

  • Newell, K. 1984. Interaction between two decomposer Basidiomycetes and a collembolan under Sitka spruce: Distribution, abundance and selective grazing.Soil. Biol. Biochem. 16:227–233.

    Google Scholar 

  • Sabelis, M.W., Vermaat, J.E., andGroeneveld, A. 1984. Arrestment response of the predatory mite,Phytoseiulus persimilis, to steep odour gradients of a kairomone.Physiol. Entomol. 9:437–446.

    Google Scholar 

  • Schoonhoven, L.M. 1968. Chemosensory bases of host plant selection.Annu. Rev. Entomol. 13:115–136.

    Google Scholar 

  • Shaw, P.J.A. 1988. A consistent hierarchy in the fungal feeding preferences of the CollembolaOnychiurus armatus.Pedobiologia 31:179–187.

    Google Scholar 

  • Sinha, R.N., Tuma, D., Abramson, D., andMuir, W.E. 1988. Fungal volatiles associated with moldy grain in ventilated and non-ventilated bin-stored wheat.Mycopathologia 101:53–60.

    PubMed  Google Scholar 

  • Talou, T., Delmas, M., andGaset, A. 1987. Principal constituents of black truffle (Tuber melanosporum) aroma.J. Agric. Food Chem. 35:774–777.

    Google Scholar 

  • Vanhaelen, M., Vanhaelen-Fastré, R., andGeeraerts, J. 1980. Occurrence in mushrooms (Homobasidiomycetes) ofcis- and trans-octa-l,5-dien-3-ol, attractants to the cheese miteTyrophagus putrescentiae (Schrank) (Acarina, Acaridae).Experientia 36:406–407.

    Google Scholar 

  • Vet, L.E.M., Janse, C., Van Achterberg, C., andVan Alphen, J.J.M. 1984. Microhabitat location and niche segregation in two sibling species of drosophilid parasitoids:Asobara tabida (Nees)and A. rufescens (Foerster) (Braconidae: Alysiinae).Oecologia (Berlin) 61:182–188.

    Google Scholar 

  • Visser, J.H. 1986. Host odor perception in phytophagous insects.Annu. Rev. Entomol. 31:121–144.

    Google Scholar 

  • Waage, J.K. 1979. Foraging for patchily distributed hosts by the parasitoid,Nemerotis canescens.J. Anim. Ecol. 48:353–371.

    Google Scholar 

  • Watson, R.L., Largent, D.L., andWood, W.F. 1986. The “coal tar” odor ofThricholoma inamoenum.Mycologia 78:965–966.

    Google Scholar 

  • Williams, A.A., Hollands, T.A., andTucknott, O.G. 1981. The gas chromatographic-mass spectrometric examination of the volatiles produced by the fermentation of a sucrose solution.Z. Lebensm. Unters. Forsch. 172:377–381.

    Google Scholar 

  • Wright, R.H. 1964. The Science of Smell. George Allen and Unwin Ltd., London.

    Google Scholar 

  • Zechman, J.M., Aldinger, S., andLabows, J.N., Jr. 1986. Characterization of pathogenic bacteria by automated headspace concentration-gas chromatography.J. Chromatogr. 377:49–57.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bengtsson, G., Hedlund, K. & Rundgren, S. Selective odor perception in the soil collembolaOnychiurus armatus . J Chem Ecol 17, 2113–2125 (1991). https://doi.org/10.1007/BF00987995

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00987995

Key Words

Navigation