Skip to main content
Log in

Glutamic acid: A strong candidate as the neurotransmitter of the cerebellar granule cell

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Free amino acids and cholinergic enzymes were investigated in the cerebellum of reeler and weaver mice in an attempt to identify the neurotransmitter characteristic of the granule cell population and to clarify any neurotransmitter abnormalities of their pre- and postsynaptic neurons induced by their depletion. The data indicate that glutamic acid may be the neurotransmitter of the granule cells. Pre- and postsynaptic neurotransmitter activity seemed not to be markedly altered in cerebellar granule cell dysgenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eccles, J.C., Ito, M., andSzentagothai, J. 1967. The Cerebellum as a Neuronal Machine, Springer-Verlag, New York.

    Google Scholar 

  2. Margolis, G., andKilham, L. 1968. Virus-induced cerebellar hypoplasia. Pages 113–146,in Zimmerman, H.M. (ed.), Infections of the nervous system. Assoc. Research in Nervous and Mental Disease, Vol. XLIV, The Williams and Wilkins Company, Baltimore.

    Google Scholar 

  3. Sidman, R.L. 1968. Development of interneuronal connections in brains of mutant mice. Pages 163–193,in Carlson, F.D. (ed.), Physiological and Biochemical Aspects of Nervous Integration. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

    Google Scholar 

  4. Shrier, B.K., andThompson, E.J. 1974. On the role of glial cells in mammalian nervous system. J. Biol. Chem. 249(6):1769–1780.

    Google Scholar 

  5. Siggins, G.R., Hoffer, B.J., Oliver, A.P., andBloom, F.E. 1971. Activation of a central noradrenergic projection to cerebellum. Nature 233:481–483.

    Google Scholar 

  6. Tebécis, A.K. 1974. Cerebellum. Pages 86–115,in Transmitters and Identified Neurons in the Mammalian Central Nervous System, Scientechnica (Publishers) Ltd., Bristol.

    Google Scholar 

  7. Altman, J., Anderson, W.T., andWright, K.A. 1967. Selective destruction of microneurons of the cerebellar cortex with fractionated low-dose X-rays. Exp. Neurol. 17:481–497.

    Google Scholar 

  8. Hamburgh, M. 1963. Analysis of the postnatal developmental effects of “Reeler”, a neurological mutation in mice. A study in developmental genetics. Dev. Biol. 8:165–185.

    Google Scholar 

  9. Llinas, R., Hillman, D.E., andPrecht, W. 1973. Neuronal circuit reorganization in mammalian agranular cerebellar cortex. J. Neurobiol. 4:69–94.

    Google Scholar 

  10. Altman, J., andAnderson, W.J. 1972. Experimental reorganization of the cerebellar cortex: I. Morphological effects of elimination of all microneurons with prolonged X-irradiation started at birth. J. Comp. Neurol. 146:355–405.

    Google Scholar 

  11. Altman, J., andAnderson, W.J. 1973. Experimental reorganization of the cerebellar cortex: II. Effects of elimination of most microneurons with prolonged X-irradiation started at four days. J. Comp. Neurol. 149:123–152.

    Google Scholar 

  12. Rakic, P., andSidman, R.L. 1973. Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J. Comp. Neurol. 152:133–162.

    Google Scholar 

  13. Rakic, P., andSidman, R.L. 1973. Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J. Comp. Neurol. 152:103–132.

    Google Scholar 

  14. Ellman, G.L., Courtney, K.D., Andres, V., andFeatherstone, R.M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.

    Google Scholar 

  15. Fonnum, F. 1966. A radiochemical method for the estimation of choline acetyltransferase. Biochem. J. 100:479–484.

    Google Scholar 

  16. Hudson, D.B., Vernadakis, A., andTimiras, P.S. 1970. Regional changes in amino acid concentration in the developing brain and the effects of neonatal administration of estradiol. Brain Res. 23:213–222.

    Google Scholar 

  17. Bloom, F.E. 1972. Amino acids and polypeptides in neuronal function. Neurosci. Res. Program Bull. 10:127–220.

    Google Scholar 

  18. Curtis, D.R., andJohnston, G.A.R. 1970. Amino acid transmitters. Pages 115–131,in Lajtha, A. (ed.), Handbook of Neurochemistry, Plenum Press, New York.

    Google Scholar 

  19. Davison, A.N., andKaczmarek, L.K. 1971. Taurine—a possible neurotransmitter. Nature (London) 234:107–115.

    Google Scholar 

  20. Johnson, J.L. 1972. Glutamic acid as synaptic transmitter in the nervous system. A review. Brain Res. 37:1–19.

    Google Scholar 

  21. Hudson, D.B., Valcana, T., andTimiras, P.S. 1976. Monoamine metabolism in the developing rat brain and effects of ionizing radiation. Brain Res. (in press).

  22. Landis, S.C., Shoemaker, W.J., Schlumpf, M., andBloom, F.E. 1975. Catecholamines in mutant mouse cerebellum: Fluorescence microscopic and chemical studies. Brain Res. 93:253–266.

    Google Scholar 

  23. Valcana, T., Hudson, D., andTimiras, P.S. 1972. Effects of X-irradiation on the content of amino acids in the developing rat cerebellum. J. Neurochem. 19:2229–2232.

    Google Scholar 

  24. Valcana, T., Liao, C., andTimiras, P.S. 1974. Effects of X-radiation on the development of the cholinergic system of the rat brain. II. Investigation of alterations in acetylcholine content. Environ. Physiol. Biochem. 4:58–63.

    Google Scholar 

  25. Valcana, T., Liao, C., andTimiras, P.S. 1974. Effects of X-radiation on the subcellular distribution of cholinergic enzymes in the developing rat cerebellum. Brain Res. 73:105–120.

    Google Scholar 

  26. Valcana, T., andTimiras, P.S. 1974. Effects of X-radiation on the development of the cholinergic system of the rat brain. I. Study of alterations in choline acetyltransferase and acetylcholinesterase activity and acetylcholinesterase synthesis. Environ. Physiol. Biochem. 4:47–57.

    Google Scholar 

  27. Valcana, T., Vernadakis, A., andTimiras, P.S. 1969. Effects of neonatal X-radiation on choline acetyltransferase activity in various areas of the developing central nervous system. Pages 887–897,in Sikov, M.R., andMahlum, D.D. (eds.), Radiation Biology of the Fetal and Juvenile Mammal, U.S.A.E.C. Division of Technical Information Extension, Oak Ridge, Tennessee.

    Google Scholar 

  28. Young, A., Oster-Granite, M., Herndon, R., andSnyder, S. 1974. Glutamic acid: Selective depletion by viral induced granule cell loss in hamster cerebellum. Brain Res. 73:1–13.

    Google Scholar 

  29. Silver, A. 1967. Cholinesterases of the central nervous system with special reference to the cerebellum. Int. Rev. Neurobiol. 10:57–109.

    Google Scholar 

  30. Woodward, D.J., Hoffer, B.J., Siggins, G.R., andBloom, F.E. 1971. The ontogenetic development of synaptic junctions, synaptic activation and responsiveness to neurotransmitter substances in rat cerebellar Purkinje cells. Brain Res. 34:73–97.

    Google Scholar 

  31. Bignami, A., andDuhl, D. 1974. The development of Bergman glia in mutant mice with cerebellar malformations: Reeler, staggerer and weaver. Immunofluorescence study with antibodies to the glial fibrillary acidic protein. J. Comp. Neurol. 155:219–230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudson, D.B., Valcana, T., Bean, G. et al. Glutamic acid: A strong candidate as the neurotransmitter of the cerebellar granule cell. Neurochem Res 1, 73–81 (1976). https://doi.org/10.1007/BF00965633

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965633

Keywords

Navigation