Skip to main content
Log in

Antioxidant properties of dehydrozingerone and curcumin in rat brain homogenates

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The present study investigates the inhibition of lipid peroxidation by dehydrozingerone and curcumin in rat brain homogenates. Both the test compounds inhibited the formation of conjugated dienes and spontaneous lipid peroxidation. These compounds also inhibited lipid peroxidation induced by ferrous ions, ferric-ascorbate and ferric-ADP-ascorbate. In all these cases, curcumin was more active than dehydrozingerone and dl-α-tocopherol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Southern PA, Powis G: Free radicals in medicine. I. Chemical nature and biological reactions. Mayo Clin Proc 63: 381–399, 1988

    Google Scholar 

  2. Bondy SC: reactive oxygen species: Relation to aging and neurotoxic damage. Neurotoxicol 13: 87–100, 1992

    Google Scholar 

  3. Ames BN: Endogenous oxidative DNA damage, aging and cancer. Free Rad Res Commun 7: 121–128, 1989

    Google Scholar 

  4. Halliwell B, Gutteridge JMC, Cross CE: Free radicals antioxidants, and human disease: Where are we now? J Lab Clin Med 119: 598–620, 1992

    Google Scholar 

  5. Halliwell B: Antioxidants and the central nervous system: Some fundamental questions. Acta Neurol Scand 129: 23–33, 1989

    Google Scholar 

  6. Hunt JV, Dean RT, Wolff SP: Hydroxyl radical production and autoxidative glycosylation. Biochem J 256: 205–212, 1988

    Google Scholar 

  7. Esterbauer H, Gebicki J, Puhl H, Jurgens G: The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Rad Biol Med 13: 341–390, 1992

    Google Scholar 

  8. Jenner P, Dexter DT, Sian J, Schapira AHV, Marsden CD: Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease. Annals Neurol 32: 582–587, 1992

    Google Scholar 

  9. McCall JM and Panetta JA: Traumatic and ischemia/reperfusion injury to the CNS. Annual Rep Med Chem 27: 31–40, 1992

    Google Scholar 

  10. Peruche B and Krieglstein J: Mechanisms of drug actions against neuronal damage caused by ischemis — An overview. Prog Neuropharmacol Biol Psych 17: 21–70, 1993.

    Google Scholar 

  11. Halliwell B, Gutteridge JMC: Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet 1: 1396–1397, 1984

    Google Scholar 

  12. Srimal RC: Curcumin. Drugs Future 12: 331–333 1987

    Google Scholar 

  13. Ammon HPT, Wahl MA: Pharmacology of curcumin. Plant Med 57: 1–7, 1991

    Google Scholar 

  14. Soudamini KK, Unnikrishnan MC, Soni KB, Kuttan R: Inhibition of lipid peroxidation and cholesterol levels in mice by curcumin. Indian J Physiol Pharmacol 36: 239–234, 1992

    Google Scholar 

  15. Kunchandy E, Rao MNA: Effect of curcumin on hydroxyl radical generation through Fenton reaction. Int J Pharm 57: 173–176, 1989

    Google Scholar 

  16. Kunchandy E, Rao MNA: Oxygen radical scavenging activity of curcumin. Int J Pharm 58: 237–240, 1990

    Google Scholar 

  17. Unnikrishnan MK, Rao MNA: Curcumin inhibits nitrite induced methemoglobin formation. FEBS Lett 301: 195–196, 1992

    Google Scholar 

  18. Susan M, Rao MNA: Induction of glutathione S-transferase activity by curcumin in mice. Arznein-Forsch./Drug Res 42: 962–964, 1992

    Google Scholar 

  19. Sharma OP: Antioxidant activity of curcumin and related substances. Biochem Pharmacol: 25: 1811–1812, 1976

    Google Scholar 

  20. Toda S, Miyase T, Arichi H, Tanizawa H, Takino Y: Natural antioxidants. III. Antioxidative components isolated from rhizome ofCurcuma longa L. Chem Pharm Bull (Tokyo) 33: 1725–1728, 1985

    Google Scholar 

  21. Jitoe A, Masuda T, Tengah IGP, Suprata DN, Gara IW, Nakatani N: Antioxidant activity of tropical ginger extracts and analysis of contained curcuminoids. J Agric Food Chem 40: 1337–1340, 1992

    Google Scholar 

  22. Sreejayan, Rao MNA: Curcumin inhibits iron-dependant lipid peroxidation. Int J Pharm 100: 93–97, 1993

    Google Scholar 

  23. Singh GB, Leach GDH, Atal CK: Antiinflammatory actions of Methyl-and phenyl-3-methoxy-4-hydroxy styryl ketones. Arzneim-Forsch./ Drug Res 37: 435–440, 1987

    Google Scholar 

  24. Elias G, Rao MNA: Synthesis and antiinflammatory activity of substituted (E)-4-phenyl-3-buten-2-ones. Eur J Med Chem 23: 379–380, 1988

    Google Scholar 

  25. Saldanha LA, Elias G, Rao MNA: Oxygen radical scavenging activity of phenylbutenones and their correlation with antiinflammatory activity. Arzneim-Forsch./Drug Res 40: 89–91, 1990

    Google Scholar 

  26. Shivakumar BR, Anandatheerthavarada HK, Ravindranath V: Free radical scavenging systems in developing rat brain. Int J Develop Neurosci 9: 181–195, 1991

    Google Scholar 

  27. Braughler JM, Duncan LA, Chase RL: The involvement of iron in lipid peroxidation. J Biol Chem 261: 10282–10289, 1986

    Google Scholar 

  28. Buege JA, Aust SD: Microsomal lipid peroxidation. Methods Enzymol LII: 302–310, 1978

    Google Scholar 

  29. Cluffi M, Gentilini G, Franchi-Micheli S, Zilletti L: Lipid peroxidation induced “in vivo”: by iron carbohydrate complex in the rat brain cortex. Neurochem Res 16: 43–49, 1991

    Google Scholar 

  30. Arnaiz SL, Llesuy S: Oxidative stress in mouse heart by antitumoral drugs: A comparative study of doxorubicin and mitoxantrone. Toxicology 77: 31–38, 1993

    Google Scholar 

  31. Gutteridge JMC, Richmond R, Halliwell B: Inhibition of the iron catalyzed formation of hydroxyl radicals from superoxide and lipid peroxidation by desferrioxamine. Biochem J 184: 469–472, 1979

    Google Scholar 

  32. Braughler JM, Chase RL, Pregenzer JF: Oxidation of ferrous iron during peroxidation of various lipid substrates. Biochem Biophys Acta 921: 457–464, 1987

    Google Scholar 

  33. Koppenol WW, Liebman JF: The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion (FeO2+). J Phys Chem 88: 99–101, 1984

    Google Scholar 

  34. Ryan TP, Aust SD: The role of iron in oxygen mediated toxicities. Crit Rev Toxicol 22: 119–141, 1992

    Google Scholar 

  35. Kogurescan K, Watson BD, Busto R, Abe K: Potentiation of lipid peroxides by ischemia in rat brain. Neurochem Res 7: 437–454, 1982

    Google Scholar 

  36. Tonnesen HH, Greenhill JV: Studies on curcumin and curcuminoids. XXII: Curcumin as a reducing agent and as a radical scavenger. Int J Pharm 87: 79–87, 1992

    Google Scholar 

  37. Conney AH, Lysz T, Ferraro T, Abidi TF, Manchand PS, Laskin JD, Haung M: Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin. Adv Enz Regulation 31: 385–396, 1991

    Google Scholar 

  38. Graf E: Antioxidant potential of ferulic acid. Free Rad Biol Med 13: 435–448, 1992

    Google Scholar 

  39. Cuvelier ME, Richard H, Berset C: Comparison of the antioxidant activity of some acid phenols: Structure activity relationship. Biosci Biotech Biochem 56: 324–325, 1992

    Google Scholar 

  40. Burton GW, Doba T, GAve EJ, Hughes L, Lee FL, Prasad L, Ingold KU: Autoxidation of biological molecules 4. Maximizing the antioxidant activity of phenols. J Am Chem Soc 107: 7053–7065, 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajakumar, D.V., Rao, M.N.A. Antioxidant properties of dehydrozingerone and curcumin in rat brain homogenates. Mol Cell Biochem 140, 73–79 (1994). https://doi.org/10.1007/BF00928368

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00928368

Key words

Navigation