Skip to main content
Log in

Subduction zone seismicity and the thermo-mechanical evolution of downgoing lithosphere

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

In this paper we discuss characteristic features of subduction zone seismicity at depths between about 100 km and 700 km, with emphasis on the role of temperature and rheology in controlling the deformation of, and the seismic energy release in downgoing lithosphere. This is done in two steps. After a brief review of earlier developments, we first show that the depth distribution of hypocentres at depths between 100 km and 700 km in subducted lithosphere can be explained by a model in which seismic activity is confined to those parts of the slab which have temperatures below a depth-dependent critical valueT cr.

Second, the variation of seismic energy release (frequency of events, magnitude) with depth is addressed by inferring a rheological evolution from the slab's thermal evolution and by combining this with models for the system of forces acting on the subducting lithosphere. It is found that considerable stress concentration occurs in a reheating slab in the depth range of 400 to 650–700 km: the slab weakens, but the stress level strongly increases. On the basis of this stress concentration a model is formulated for earthquake generation within subducting slabs. The model predicts a maximum depth of seismic activity in the depth range of 635 to 760 km and, for deep earthquake zones, a relative maximum in seismic energy release near the maximum depth of earthquakes. From our modelling it follows that, whereas such a maximum is indeed likely to develop in deep earthquake zones, zones with a maximum depth around 300 km (such as the Aleutians) are expected to exhibit a smooth decay in seismic energy release with depth. This is in excellent agreement with observational data. In conclusion, the incoroporation of both depth-dependent forces and depth-dependent rheology provides new insight into the generation of intermediate and deep earthquakes and into the variation of seismic activity with depth.

Our results imply that no barrier to slab penetration at a depth of 650–700 km is required to explain the maximum depth of seismic activity and the pattern of seismic energy release in deep earthquake zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aki, K. (1979),Characterization of barriers on an earthquake fault, J. Geophys. Res.84, 6140–6148.

    Google Scholar 

  • Aki, K. (1984),Asperities, barriers, characteristic earthquakes and strong motions, J. Geophys. Res.89, 5867–5872.

    Google Scholar 

  • Apperson, K.D. andFrohlich, C. (1987),The relationship between Wadati-Benioff zone geometry and P, T and B axes of intermediate and deep focus earthquakes, J. Geophys. Res.92, 13821–13831.

    Google Scholar 

  • Bodine, J. H., Steckler, M. S., andWatts, A. B. (1981),Observations of flexure and the rheology of the oceanic lithosphere, J. Geophys. Res.86, 3695–3707.

    Google Scholar 

  • Byerlee, J. (1978),Friction of rocks, Pure and Appl. Geophys.116, 615–626.

    Google Scholar 

  • Caldwell, J. G. andTurcotte, D. L. (1979),Dependence of the thickness of the elastic oceanic lithosphere on age, J. Geophys. Res.84, 7472–7576.

    Google Scholar 

  • Chapple, W. M. andForsyth, D. W. (1979),Earthquakes and bending of plates at trenches, J. Geophys. Res.84, 6729–6749.

    Google Scholar 

  • Christensen, U. R. andYuen, D. A. (1982),The interaction of a subducting lithospheric slab with a chemical or phase boundary, J. Geophys. Res.89, 4389–4402.

    Google Scholar 

  • Chung, W.-Y. andKanamori, H. (1980),Variation of seismic source parameters and stress drops within a descending slab and its implications in plate mechanisms, Phys. Earth Planet. Inter.23, 134–159.

    Google Scholar 

  • Cloetingh, S. andWortel, R. (1986),Stress in the Indo-Australian plate, Tectonophysics132, 49–67.

    Google Scholar 

  • Creager, K. C. andJordan, T. H. (1984),Slab penetration into the lower mantle, J. Geophys. Res.89, 3031–3049.

    Google Scholar 

  • Creager, K. C. andJordan, T. H. (1986),Slab penetration into the lower mantle beneath the Mariana and other island arcs of the northwest Pacific, J. Geophys. Res.91, 3573–3590.

    Google Scholar 

  • Crough, S. T. (1975),Thermal model of oceanic lithosphere, Nature256, 388–390.

    Google Scholar 

  • Crough, S. T. (1977),Approximate solutions for the formation of the lithosphere, Phys. Earth Planet. Inter.14, 365–377.

    Google Scholar 

  • Das, S. andAki, K. (1977),Fault planes with barriers: a versatile earthquake model, J. Geophys. Res.82, 5648–5670.

    Google Scholar 

  • Davies, G. F. (1980),Mechanics of subducted lithosphere, J. Geophys. Res.85, 6304–6318.

    Google Scholar 

  • Davies, G. F. (1983),Subduction zone stresses: constraints from mechanics and from topographic and geoid anomalies, Tectonophysics99, 85–98.

    Google Scholar 

  • Deffeyes, K. S. (1972),Plume convection with an upper mantle temperature inversion, Nature240, 539–544.

    Google Scholar 

  • Elsasser, W. M.,Convection and stress propagation in the upper mantle, InThe Application of Modern Physics to the Earth and Planetary Interiors (S. K. Runcorn, ed.) (Wiley-Interscience, New York 1969), pp. 223–246.

    Google Scholar 

  • England, P. J. andWortel, R. (1980),Some consequences of the subduction of young slabs, Earth Planet. Sci. Lett.47, 403–415.

    Google Scholar 

  • Forsyth, D. W. (1975),Fault plane solutions and tectonics of the South Atlantic and Scotia Sea, J. Geophys. Res.80, 1429–1443.

    Google Scholar 

  • Forsyth, D. W. (1975),Determinations of focal depths of earthquakes associated with the bending of oceanic plates at trenches, Phys. Earth Planet. Inter.28, 141–160.

    Google Scholar 

  • Fujita, K. andKanamori, H. (1981),Double seismic zones and stresses of intermediate depth earthquakes, Geophys. J. R. Astron. Soc.66, 131–156.

    Google Scholar 

  • Giardini, D. andWoodhouse, J. H. (1984),Deep seismicity and modes of deformation in Tonga subduction zone, Nature307, 505–509.

    Google Scholar 

  • Goetze, C. (1978),The mechanisms of creep in olivine, Phil. Trans. R. Soc. London A288, 99–119.

    Google Scholar 

  • Goetze, C. andEvans, B. (1979),Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics, Geophys. J. R. Astron. Soc.59, 463–478.

    Google Scholar 

  • Griggs, D. T. (1972).The sinking lithosphere and the focal mechanism of deep earthquakes, InThe Nature of the Solid Earth (E. C. Robertson, J. F. Hays, andL. Knopoff, eds.) (McGraw-Hill Inc., New York, 1972) pp. 361–384.

    Google Scholar 

  • Griggs, D. T. andBaker, D. W. The origin of deep focus earthquakes, InProperties of Matter Under Unusual Circumstances (H. Mark ans S. Fernback, eds.) (J. Wiley, New York, 1968) pp. 23–42.

    Google Scholar 

  • Hasebe, K., Fujii, N., andUyeda, S. (1970),Thermal processes under island arcs, Tectonophysics10, 335–355.

    Google Scholar 

  • House, L. S. andJacob, K. H. (1982),Thermal stresses in subducting lithosphere can explain double seismic zones, Nature295, 587–589.

    Google Scholar 

  • Isacks, B., Oliver, J., andSykes, L. R. (1968),Seismology and the new global tectonics, J. Geophys. Res.73, 5855–5899.

    Google Scholar 

  • Isacks, B. andMolnar, P. (1971),Distribution of stresses in the descending lithosphere from a global survey of focal mechanism solutions of mantle earthquakes, Rev. Geophys. Space Phys.9, 103–174.

    Google Scholar 

  • Jarrard, R. D. (1986),Relations among subduction parameters, Rev. Geophys.24, 217–284.

    Google Scholar 

  • Kanamori, H.,The nature of seismicity patterns before large earthquakes, InEarthquake Prediction: An International Review (D. W. Simpson and P. G. Richards, eds.) (Maurice Ewing Series 4, AGU, Washington, D.C. 1981) pp. 1–19.

    Google Scholar 

  • Kawakatsu, H. (1986),Double seismic zones: kinematics, J. Geophys. Res.91, 4811–4825.

    Google Scholar 

  • Lay, Th. andKanamori, H.,An asperity model of large earthquake sequences, InEarthquake Prediction: An International Review (D. W. Simpson and P. G. Richards, eds.) (Maurice Ewing Series 4, AGU, Washington, D. C. 1981) pp. 579–592.

    Google Scholar 

  • Le Pichon, X., Francheteau, J., andBonnin, J.,Plate Tectonics (Elsevier, Amsterdam, 1973) 311 pp.

    Google Scholar 

  • McKenzie, D. P. (1967),Some remarks on heat flow and gravity anomalies, J. Geophys. Res.72, 6261–6273.

    Google Scholar 

  • McKenzie, D. P. (1969),Speculations on the consequences and causes of plate motions, Geophys. J. R. Astron. Soc.18, 1–32.

    Google Scholar 

  • McKenzie, D. P. (1970),Temperature and potential temperature beneath island arcs, Tectonophysics10, 357–366.

    Google Scholar 

  • Minear, J. W. andToksöz, M. N. (1970),Thermal regime of a downgoing slab and new global tectonics, J. Geophys. Res.75, 1397–1419.

    Google Scholar 

  • Molnar, P., Freedman, D., andShih, J. S. F. (1979),Lengths of intermediate and deep seismic zones and temperatures in downgoing slabs of lithosphere, Geophys. J. R. Astron. Soc.56, 41–54.

    Google Scholar 

  • O'Connell, R. J. (1977),On the scale of mantle convection, Tectonophysics38, 119–136.

    Google Scholar 

  • Ogawa, M. (1987),Shear instability in a viscoelastic material as cause of deep-focus earthquakes, J. Geophys. Res.92, 13801–13810.

    Google Scholar 

  • Ohtani, E. andKumazawa, M. (1981),Melting of forsterite Mg 2SiO4 up to 15 GPa, Phys. Earth Planet. Int.27, 32–38.

    Google Scholar 

  • Oxburgh, E. R. andTurcotte, D. L. (1970),Thermal structure of island arcs, Geol. Soc. Amer. Bull.81, 1665–1688.

    Google Scholar 

  • Parsons, B. andSclater, J. G. (1977),An analysis of the variation of ocean floor bathymetry and heat flow with age, J. Geophys. Res.82, 803–827.

    Google Scholar 

  • Peltier, W. R. andJarvis, G. T. (1982),Whole mantle convection and the thermal evolution of the earth, Phys. Earth Planet. Int.29, 281–304.

    Google Scholar 

  • Ranalli, G.,Rheology of the Earth: Deformation and Flow Processes in Geophysics and Geodynamics (Allen and Unwin, London, 1987) 366 pp.

    Google Scholar 

  • Richter, F. M. (1979),Focal mechanisms and seismic energy release of deep and intermediate earthquakes in the Tonga-Kermadec region and their bearing on the depth extent of mantle flow, J. Geophys. Res.84, 6783–6795.

    Google Scholar 

  • Ruff, L. andKanamori, H. (1980),Seismicity and the subduction process, Phys. Earth Planet. Inter.23, 240–252.

    Google Scholar 

  • Ruff, L. andKanamori, H. (1983),The rupture process and asperity distribution of three great earthquakes from long-period diffracted P-waves, Phys. Earth Planet. Inter.31, 202–230.

    Google Scholar 

  • Schatz, J. F. andSimmons, G. (1972),Thermal conductivity of earth materials at high temperatures, J. Geophys. Res.77, 6966–6983.

    Google Scholar 

  • Shiono, K. andSugi, N. (1985),Life of an oceanic plate: cooling time and assimilation time, Tectonophysics112, 35–50.

    Google Scholar 

  • Spence, W. (1987),Slab pull and the seismotectonics of subducting lithosphere, Rev. Geophys.25, 55–69.

    Google Scholar 

  • Stacey, F. D. (1977),A thermal model of the earth, Phys. Earth Planet. Int.15, 341–348.

    Google Scholar 

  • Stark, P. B. andFrohlich, C. (1985),The depth of the deepest deep earthquakes, J. Geophys. Res.90, 1859–1869.

    Google Scholar 

  • Toksöz, M. N., Minear, J. W., andJulian, B. R. (1971),Temperature field and geophysical effects of a downgoing slab, J. Geophys. Res.76, 1113–1138.

    Google Scholar 

  • Truchan, M. andLarson, R. L. (1973),Tectonic lineaments on the Cocos plate, Earth Planet. Sci. Lett.17, 426–432.

    Google Scholar 

  • Turcotte, D. L. andOxburgh, E. R. (1967),Finite amplitude convection cells and continental drift, J. Fluid Mech.28, 29–42.

    Google Scholar 

  • Turcotte, D. L. andSchubert, G. (1971),Structure of the olivine-spinel phase boundary in the descending lithosphere, J. Geophys. Res.76, 7980–7987.

    Google Scholar 

  • Turcotte, D. L. andSchubert, G. (1973),Frictional heating of the descending lithosphere, J. Geophys. Res.78, 5876–5886.

    Google Scholar 

  • Uyeda, S. andMiyashiro, A. (1974),Plate tectonics and the Japanese islands: A synthesis. Geol. Soc. Am. Bull.85, 1159–1170.

    Google Scholar 

  • VandenBeukel J. andWortel, R. (1987),Temperatures and shear stresses in the upper part of a subduction zone, Geophys. Res. Lett.14, 1057–1060.

    Google Scholar 

  • Vassiliou, M. S., Hager, B. H., andRaefsky, A. (1984),The distribution of earthquakes with depth and stress in subducting slabs, J. Geodynamics1, 11–28.

    Google Scholar 

  • Vlaar, N. J.,The driving mechanism of plate tectonics: a qualitative approach, InProgress in Geodynamics (G. J. Borradaile, A. R. Ritsema, H. E. Rondeel and O. J. Simon, eds.) (North Holland, Amsterdam, 1975) pp. 234–245.

    Google Scholar 

  • Vlaar, N. J. andWortel, M. J. R. (1976),Lithospheric aging, instability and subduction, Tectonophysics32, 331–351.

    Google Scholar 

  • Watts, A. B., Bodine, J. H., andSteckler, M. S. (1980),Observations of flexure and the state of stress in the oceanic lithosphere, J. Geophys. Res.85, 6369–6376.

    Google Scholar 

  • Weertman, J. (1970),The creep strength of the earth's mantle, Rev. Geophys. Space Phys.8, 145–168.

    Google Scholar 

  • Wiens, D. A. andStein, S. (1983),Age dependence of oceanic intraplate seismicity and implications for lithospheric evolution, J. Geophys. Res.88, 6455–6468.

    Google Scholar 

  • Wiens, D. A. andStein, S. (1984),Intraplate seismicity and stresses in young oceanic lithosphere, J. Geophys. Res.89, 11442–11464.

    Google Scholar 

  • Wortel, R. (1980a),Age-dependent subduction of oceanic lithosphere, Ph.D. Thesis, University of Utrecht, 147 pp.

  • Wortel, M. J. R. (1980b),Comments on “Lengths of intermediate and deep seismic zones and temperatures in downgoing slabs of lithosphere” by Peter Molnar, David Freedman and John S. F. Shih, Geophys. J. R. Astron. Soc.60, 307–313.

    Google Scholar 

  • Wortel, R. (1982),Seismicity and rheology of subducted slabs, Nature296, 553–556.

    Google Scholar 

  • Wortel, R. (1986),Deep earthquakes and the thermal assimilation of subducting lithosphere, Geophys. Res. Lett.13, 34–37.

    Google Scholar 

  • Wortel, M. J. R. andVlaar, N. J. (1978),Age-dependent subduction of oceanic lithosphere beneath western South America, Phys. Earth Planet. Int.17, 201–208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wortel, M.J.R., Vlaar, N.J. Subduction zone seismicity and the thermo-mechanical evolution of downgoing lithosphere. PAGEOPH 128, 625–659 (1988). https://doi.org/10.1007/BF00874551

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00874551

Key words

Navigation