Skip to main content
Log in

Photobiology of Bacteria

Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The field of photobiology is concerned with the interactions between light and living matter. For Bacteria this interaction serves three recognisable physiological functions: provision of energy, protection against excess radiation and signalling (for motility and gene expression). The chemical structure of the primary light-absorbing components in biology (the chromophores of photoactive proteins) is surprisingly simple: tetrapyrroles, polyenes and derivatised aromats are the most abundant ones. The same is true for the photochemistry that is catalysed by these chromophores: this is limited to light-induced exciton- or electron-transfer and photoisomerization.

The apoproteins surrounding the chromophores provide them with the required specificity to function in various aspects of photosynthesis, photorepair, photoprotection and photosignalling. Particularly in photosynthesis several of these processes have been resolved in great detail, for others at best only a physiological description can be given.

In this contribution we discuss selected examples from various parts of the field of photobiology of Bacteria. Most examples have been taken from the purple bacteria and the cyanobacteria, with special emphasis on recently characterised signalling photoreceptors inEctothiorhodospira halophila and inFremyella diplosiphon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad M & Cashmore C (1993)HY4 gene ofA. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366: 162–166

    Article  PubMed  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim. Biophys. Acta 1098: 275–335

    PubMed  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H & Rees DC (1987a) Structure of the reaction centre fromRhodopseudomonas sphaeroides R-26: The co-factors. Proc. Natl. Acad. Sci. USA 84: 5730–5734

    PubMed  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H & Rees DC (1987b) Structure of the reaction centre fromRhodopseudomonas sphaeroides R-26: The protein subunits. Proc. Natl. Acad. Sci. USA 84: 6162–6166

    Google Scholar 

  • Armitage JP (1988) Tactic responses in photosynthetic bacteria. Can. J. Microbiol. 34: 475–481

    Google Scholar 

  • Armitage JP (1992) Behavioral responses in bacteria. Annu. Rev. Physiol. 54: 683–714

    PubMed  Google Scholar 

  • Barber J & De Las Rivas J (1993) A functional model for the role of cytochrome-b(559) in the protection against donor and acceptor side photoinhibition. Proc. Natl. Acad. Sci. USA 90: 10942–10946

    PubMed  Google Scholar 

  • Brown S, Poole PS, Jeziorska W & Armitage JP (1993) Chemokinesis inRhodobacter sphaeroides is the result of a long term increase in the rate of flagellar rotation. Biochim. Biophys. Acta 1141: 309–312

    Google Scholar 

  • Buser CA, Thompson LK, Diner BA & Brudvig GW (1990) Electron-transfer reactions in manganese-depleted Photosystem-II. Biochemistry 29: 8977–8985

    PubMed  Google Scholar 

  • Cortez N, Garcia AF, Tadros MH, Gad'on N, Schiltz E & Drews G (1992) Redox-controlled,in vivo andin vitro phosphorylation of the α subunit of the light-harvesting complex I inRhodobacter capsulatus. Arch. Microbiol. 158: 315–319

    Google Scholar 

  • Chiang GG, Schaefer MR & Grossman AR (1992) Complementation of a red-light-indifferent cyanobacterial mutant. Proc. Natl. Acad. Sci. USA 89: 9415–9419

    PubMed  Google Scholar 

  • Clayton RK (1977) Light and Living Matter, R.E. Krieger Publishing Company, Huntington, New York, Volumes I and II

    Google Scholar 

  • Cogdell RJ & Frank HA (1988) How carotenoids function in photosynthetic bacteria. Biochim. Biophys. Acta 895: 63–79

    Google Scholar 

  • Coomber SA, Chaudri M, Connor A, Britton G & Hunter CN (1990) Localized transposon Tn5 mutagenesis of the photosynthetic gene cluster ofRhodobacter sphaeroides. Mol. Microbiol. 4: 977–989

    PubMed  Google Scholar 

  • Criclaard W, Cotton NPJ, Jackson JB, Hellingwerf KJ & Konings WN (1988) The transmembrane electrical potential in intact bacteria: simultaneous measurements of carotenoid absorbance changes and lipophilic cation distribution in intact cells ofRhodobacter sphaeroides. Biochim. Biophys. Acta 932: 17–25

    Google Scholar 

  • Dau H & Sauer K (1992) Electric field effects on the picosecond fluorescence of photosystem II and its relation to the energetics and kinetics of primary charge separation. Biochim. Biophys. Acta 1102: 91–106

    Google Scholar 

  • De Bont JAM, Scholten A & Hansen TA (1981) DNA-DNA hybridization ofRhodopseudomonas capsulata, Rhodopseudomonas sphaeroides, Rhodopseudomonas sulfidophila strains. Arch. Microbiol. 128: 271–274

    PubMed  Google Scholar 

  • Debus RJ (1992) The manganese and calcium ions of photosynthetic oxygen evolution. Biochim. Biophys. Acta 1102: 269–352

    PubMed  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R & Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density maps of 3 É resolution and a model of the chromophores of the photosynthetic reaction center fromRhodopseudomonas viridis. J. Mol. Biol. 180: 385–398

    PubMed  Google Scholar 

  • Federspiel NA & Grossman AR (1990) Characterization of the light-regulated gene encoding a new phycoerythrin-associated linker protein from the cyanobacteriumFremyella diplosiphon J. Bacteriol. 172: 4072–4081

    Google Scholar 

  • Gennis RB, Barquera B, Hacker B, Vandoren SR, Arnaud S, Crofts AR, Davidson E, Gray KA & Daldal F (1993) The bc(1) complexes ofRhodobacter sphaeroides andRhodobacter capsulatus. J. Bioenerg. Biomembr. 25: 195–209

    PubMed  Google Scholar 

  • Ghosh R, Ghosh-Eicher S, DiBernardino M & Bachofen R (1994) Protein phosphorylation inRhodospirillum rubrum: purification and characterization of a water-soluble B873 protein kinase and a new component of the B873 complex, which can be phosphorylated. Biochim. Biophys. Acta 1184: 28–36

    Google Scholar 

  • Golbeck JH & Bryant DA (1991) Photosystem I. In: Lee CP (Ed) Current Topics in Bioenergy Vol. 16 (pp 83–177)

  • Grossman AR, Schaefer MR, Chiang GG & Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions Microbiol. Rev. 57: 725–749.

    Google Scholar 

  • Häder D-P (1987) Photosensory behaviour in prokaryotes. Microbiol. Rev. 51: 1–21

    PubMed  Google Scholar 

  • Hellingwerf KJ, Crielaard W & Westerhoff HV (1994) Comparison of retinal-based and chlorophyll-based photosynthesis: A biothermokinetic description of photochemical reaction centers. In: Schuster S, Mazat J-P & Rigolet M (Eds) Modern Trends in Biothermokinetics (pp 45–52) Plenum Press, New York

    Google Scholar 

  • Hoff WD, Kwa SLS, Van Grondelle R & Hellingwerf KJ (1992) Low temperature absorption and fluorescence spectroscopy of the photoactive yellow protein fromEctothiorhodospira halophila. Photochem. Photobiol. 56: 529–539

    Google Scholar 

  • Hoff WD, Sprenger WW, Postma PW, Meyer TE, Veenhuis M, Leguijt T & Hellingwerf KJ (1994) The photoactive yellow protein fromEctothiorhodospira halophila as studied with a highly specific polyclonal antiserum: (intra)cellular localization, regulation of expression, and taxonomic distribution of cross-reacting proteins. J. Bacteriol., submitted

  • Imhoff JF (1992) Taxonomy, phylogeny and general ecology of anoxygenic phototrophic bacteria. In: Mann NH & Carr NG (Eds) Photosynthetic Prokaryotes Ch. 2 (pp 53–92) Plenum Press, New York

    Google Scholar 

  • Jackson JB (1991) The proton-translocating nicotinamide adenine dinucleotide transhydrogenase. J. Bioenerg. Biomembr. 23: 715–741

    PubMed  Google Scholar 

  • Jeanjean R, Matthijs HCP, Onana B, Havaux M & Joset F (1993) Exposure of the CyanobacteriumSynechocystis PCC6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant Cell Physiol. 34: 1073–1079

    Google Scholar 

  • Joliot P, Vermeglio A & Joliot A (1993) Supramolecular membrane protein assemblies in photosynthesis and respiration. Biochim. Biophys. Acta 1141: 151–174

    Google Scholar 

  • Jones MR, Fowler GJS, Gibson LCD, Grief GG, Olsen JD, Crielaard W & Hunter CN (1992) Mutants ofRhodobacter sphaeroides lacking one or more pigment-protein complexes and complementation with reaction-centre, LH1 and LH2 genes. Mol. Microbiol. 6: 1173–1184

    PubMed  Google Scholar 

  • Kim S-T, Li YF & Sancar A (1992) The third chromophore of DNA photolyase: Trp-277 ofEscherichia coli DNA photolyase repairs thymine dimers by direct electron transfer. Proc. Natl. Acad. Sci. USA 89: 900–904

    PubMed  Google Scholar 

  • Lee WJ & Whitmarsh J (1989) Photosynthetic apparatus of pea thylakoid membranes. Response to growth light intensity. Plant Physiol. 89: 932–940

    Google Scholar 

  • Leguijt T (1993) Photosynthetic electron transfer inEctothiorhodospira. PhD-Thesis, University of Amsterdam

  • Leguijt T, Engels PW, Crielaard W, Albracht SPJ & Hellingwerf KJ (1993) Abundance, subunit-composition, redox-properties and catalytic activity of the cytochrome b/c1-complex from alkaliphilic and halophilic, photosynthetic members of the familyEctothiorhodospiraceae. J. Bacteriol. 175: 1629–1636

    PubMed  Google Scholar 

  • Li P & Champion PM (1994) Investigations of the thermal response of Laser-excited biomolecules. Biophys. J. 66: 430–436

    PubMed  Google Scholar 

  • Manasse RS & Bendall DS (1993) Characteristics of cyclic electron transport in the cyanobacteriumPhormidium laminosum Biochim. Biophys. Acta 1183: 361–368

    Google Scholar 

  • Matthijs HCP, Ludérus EME, Löffler HJM, Scholts MJC & Kraayenhof R (1984) Energy metabolism in the cyanobacteriumPlectonema boryanum. Participation of the thylakoid photosynthetic electron transfer chain in the dark respiration of NADPH and NADH. Biochim. Biophys. Acta 766: 29–37

    Google Scholar 

  • Matthijs HCP & Lubberding HJ (1988) Dark respiration in cyanobacteria. In: Rogers LJ & Gallon JR (Eds) Biochemistry of the Algae and Cyanobacteria, Proc. Eur. Phytochem Soc. Vol. 28 (pp 131–145) Clarendon Press, Oxford

    Google Scholar 

  • Matthijs HCP, Van der Staay GWM & Mur LR (1994) Prochlorophytes: the ‘other’ cyanobacteria? In: Bryant DA (Ed) The Molecular Biology of Cyanobacteria (pp 49–64) Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • McGowan SJ, Gorham HC & Hodgson DA (1993) Light-induced carotenogenesis inMyxococcus xanthus: DNA sequence analysis of thecarR region. Mol. Microbiol. 10: 713–735

    Google Scholar 

  • McRee DE, Tainer JA, Meyer TE, Van Beeumen J, Cusanovich MA & Getzoff ED (1989) Crystallographic structure of a photoreceptor protein at 2.4 Å resolution. Proc. Natl. Acad. Sci. USA 86: 6533–6537

    PubMed  Google Scholar 

  • Meyer TE 1985. Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophilic phototrophic bacteriumEctothiorhodospira halophila. Biochim. Biophys. Acta 806: 175–183

    PubMed  Google Scholar 

  • Meyer TE, Fitch JC, Bartsch RG, Tollin G & Cusanovich MA (1990) Soluble cytochromes and a photoactive yellow protein isolated from the moderately halophilic purple phototrophic bacterium,Rhodospirillum salexigens. Biochim. Biophys. Acta 1016: 364–370

    PubMed  Google Scholar 

  • Meyer TE, Tollin G, Causgrove TP, Cheng P & Blankenschip RE (1991) Picosecond decay kinetics and quantum yield of fluorescence of the photoactive yellow protein from the halophilic purple phototrophic bacterium,Ectothiorhodospira halophila. Biophys. J. 59: 988–991

    Google Scholar 

  • Meyer TE, Tollin G, Hazzard JH & Cusanovich MA (1989) Photoactive yellow protein from the purple phototrophic bacterium,Ectothiorhodospira halophila. Biophys. J. 56: 559–564

    PubMed  Google Scholar 

  • Meyer TE, Yakali E, Cusanovich MA & Tollin G (1987) Properties of a water-soluble, yellow protein isolated from a halophilic phototrophic bacterium that has photochemical activity analogous to sensory rhodopsin. Biochemistry 26: 418–423

    Google Scholar 

  • Mi H, Endo T, Schreiber U, Ogawa T & Asada K (1992) Donation Rates of Electrons from NAD(P)H-mediated cyclic and respiratory electron flows via plastoquinone to P700+ in cyanobacteria. Pl. Cell Physiol. 33: 1233–1239

    Google Scholar 

  • Miller A, Leigeber H, Hoff WD & Hellingwerf KJ (1993) A light-dependent branching reaction in the photocycle of the photoactive yellow protein fromEctothiorhodospira halophila. Biochim. Biophys. Acta 1141: 190–196

    Google Scholar 

  • Molenaar D, Crielaard W & Hellingwerf KJ (1988) Characterization of proton motive force generation in liposomes reconstituted from phosphatidylethanolamine, reaction centers with light-harvesting complexes isolated fromRhodopseudomonas palustris. Biochemistry 27: 2014–2023

    Google Scholar 

  • Nitschke W & Rutherford AW (1991) Photosynthetic reaction centers: variations on a common structural theme? Trends in Biochem. Sci. 16: 241–245

    Google Scholar 

  • Okamura K, Takamiya K & Nishimura M (1985) Photosynthetic electron transfer system is operative in anaerobic cells ofErythrobacter species strain OCh-114. Arch. Microbiol. 142: 12–17

    Google Scholar 

  • Packer HL & Armitage JP (1993) The unidirectional flagellar motor ofRhodobacter sphaeroides WS8 can rotate either clockwise or counterclockwise: Characterization of the flagellum under both conditions by antibody decoration. J. Bacteriol. 175: 6041–6045

    Google Scholar 

  • Pakrasi HB, Nyhus KJ, Mannan RJ & Matthijs HCP (1992) Argyrourdi-Akoyunoglou JH (Ed) Photosystem I in the Nitrogen fixing CyanobacteriumAnabaena ATCC29413: subunit composition and directed mutagenesis of cofactor binding proteins Proc. NATO workshop on Oxygenic Photosynthesis (pp 292–304) Balabam Acad. Publ.

  • Peltier G & Schmidt GW (1991) Chlororespiration: an adaptation to nitrogen deficiency inChlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 88: 4791–4795

    Google Scholar 

  • Ramirez JM (1992) Carotenoid pigments of photosynthetic membranes. In: Barber J, Guerrero MG & Medrano H (Eds) Trends in Photosynthesis Research, Ch. 30 (pp 383–400) Intercept Ltd., Andover

    Google Scholar 

  • Sancar A & Sancar GB (1988) DNA repair enzymes. Annu. Rev. Biochem. 57: 29–67

    Article  PubMed  Google Scholar 

  • Sandmann G (1991) Light-dependent switch from formation of poly-cis carotenes to all-trans carotenoids in theScenedesmus mutant C-6D. Arch. Microbiol. 155: 229–233

    Google Scholar 

  • Scherer S (1990) Do photosynthetic and respiratory electron transport chains share redox proteins? Trends in Biochem. Sci. 15: 458–462

    Google Scholar 

  • Schlegel HG (1986) General Microbiology, Cambridge University Press, Cambridge

    Google Scholar 

  • Schluchter WM & Bryant DA (1992) Molecular characterization of FNR in cyanobacteria: cloning and sequence of thepetH gene ofSynechococcus PCC 7002. Biochemistry 31: 3092–3102

    PubMed  Google Scholar 

  • Schubert H, Kroon B & Matthijs HCP (1994)In vivo manipulation of the xanthophyll cycle and the role of zeaxanthin in the protection against photodamage in the green algaChlorella pyrenoidosa. J. Biol. Chem. 269: 7267–7272

    PubMed  Google Scholar 

  • Seliger HH (1977) Environmental photobiology. In: Smith KC (Ed) The Science of Photobiology, Ch. 6 (pp 143–173) Plenum Press, New York

    Google Scholar 

  • Shipton CA & Barber J (1991) Photoinduced degradation of the d1-polypeptide in isolated reaction centers of photosystem-II — evidence for an autoproteolytic process triggered by the oxidizing side of the photosystem. Proc. Natl. Acad. Sci. USA 88: 6691–6695

    PubMed  Google Scholar 

  • Sobczyk A, Schyns G, Tandeau de Marsac N & Houmard J (1993) Transduction of the light signal during complementary chromatic adaptation in the cyanobacteriumCalothrix sp. PCC 7601: DNA-binding proteins and modulation by phosphorylation. EMBO J. 12: 997–1004

    PubMed  Google Scholar 

  • Song P-S, Suzuki S, Kim I-D & Kim JH (1991) Properties and evolution of photoreceptors. In: Holmes MG (Ed) Photoreceptor Evolution and Function, Ch. 2 (pp 21–63) Academic Press, London

    Google Scholar 

  • Sprenger WW, Hoff WD, Armitage JP & Hellingwerf KJ (1993) The eubacteriumEctothiorhodospira halophila is negatively phototactic with a wavelength dependence that fits the absorption spectrum of the photoactive yellow protein. J. Bacteriol. 175: 3096–3104

    PubMed  Google Scholar 

  • Stavenga DG, Schwemer J & Hellingwerf KJ (1991) Visual pigments, bacterial rhodopsins and related retinoid-binding proteins. In: Holmes MG (Ed) Photoreceptor Evolution and Function, Ch. 9 (pp 261–349) Academic Press, London

    Google Scholar 

  • Takamiya K, Iba K & Nishimura M (1987) Reaction center complex from aerobic photosynthetic bacterium,Erythrobacter sp. OCh-114. Biochim. Biophys. Acta 890: 127–133

    Google Scholar 

  • Tandeau de Marsac N & Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol. Rev. 104: 119–190.

    Google Scholar 

  • Trumpower BL (1990) Cytochrome b/c1 complexes of micro organisms. Microbiol. Rev. 54: 101–129

    PubMed  Google Scholar 

  • Van Beeumen J, Devreese B, Van Bun S, Hoff WD, Hellingwerf KJ, Meyer TE, McRee DE & Cusanovich MA (1993) The primary structure of a photoactive yellow protein from the phototrophic bacterium,Ectothiorhodospira halophila, with evidence for the mass and the binding site of the chromophore. Protein Science 2: 1114–1125

    Google Scholar 

  • Van Grondelle R, Dekker JP, Gillbro T & Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim. Biophys. Acta, in press

  • Vermaas WFJ, Rutherford AW & Hansson O (1988) Site-directed mutagenesis in photosystem II of the cyanobacteriumSynechocystis sp. PCC6803: Donor D is a tyrosine residue in the D2 protein. Proc. Natl. Acad. Sci. USA 85: 8477–8481

    Google Scholar 

  • Vermeglio A, Joliot P & Joliot A (1993) The rate of cytochromec 2 photooxidation reflects the subcellular distribution of reaction centers inRhodobacter sphaeroides Ga cells. Biochim. Biophys. Acta 1183: 352–360

    Google Scholar 

  • Westerhoff HV & Van Dam K (1987) Thermodynamics and Control of Biological Free-energy Transduction, Elsevier, Amsterdam

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol. Rev. 51: 221–271.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellingwerf, K.J., Crielaard, W., Hoff, W.D. et al. Photobiology of Bacteria. Antonie van Leeuwenhoek 65, 331–347 (1994). https://doi.org/10.1007/BF00872217

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00872217

Key words

Navigation