Skip to main content
Log in

On the front lines: intraepithelial lymphocytes as primary effectors of intestinal immunity

  • Published:
Springer Seminars in Immunopathology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Bandeira A, Mota-Santos T, Itohara S, Degermann S, Heusser C, Tonegawa S, Coutinho A (1990) Localization of γ/δ T cells to the intestinal epithelium is independent of normal microbial colonization. J Exp Med 172:239

    Google Scholar 

  2. Barrett TA, Gajewski TF, Danielpour D, Chang EB, Beagley KW, Bluestone JA (1992) Differential function of intestinal intraepithelial lymphocyte subsets. J Immunol 149:1124

    Google Scholar 

  3. Beagley KW, Fujihashi K, Lagoo AS, et al (1995) Differences in intraepithelial lymphocyte T cell subsets isolated from murine small versus large intestine. J Immunol 154:5611

    Google Scholar 

  4. Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB. (1994) Recognition of a lipid antigen by CD1-restricted alpha beta(+) T cells. Nature 372:691

    Google Scholar 

  5. Bix M, Raulet D (1992) Inefficient positive selection of T cells directed by hematopoietic cells. Nature 359:330

    Google Scholar 

  6. Bland P (1988) MHC class II expression by the gut epithelium. Immunol Today 9:174

    Google Scholar 

  7. Bleicher P, Balk SP, Hagen SJ, Blumberg RS, Flotte TJ, Terhorst C. (1990) Expression of murine CD1 on gastrointestinal epithelium. Science 250:679

    Google Scholar 

  8. Bloom S, Simmons D, Jewell DP (1995) Adhesion molecules intercellular adhesion molecule-1 (ICAM1), ICAM-3 and B7 are not expressed by epithelium in normal or inflamed colon. Clin Exp Immunol 101:157

    Google Scholar 

  9. Blumberg RS, Terhorst C, Bleicher P, McDermott FV, Allan CH, Landau SB, Trier JS, Balk SP (1991) Expression of a nonpolymorphic MHC class I-like molecule, CD1 d, by human intestinal epithelial cells. J Immunol 147:2518

    Google Scholar 

  10. Boismenu R, Havran WL (1994) Modulation of epithelial cell growth by intraepithelialλβ T cells. Science 266:1253

    Google Scholar 

  11. Boismenu R, Feng L, Xia YY, Chang JCC, Havran WL (1996) Chemokine expression by intraepithelial λθ T cells. Implications for the recruitment of inflammatory cells to damaged epithelia. J Immunol 157:985

    Google Scholar 

  12. Boll G, Rudolphi R, Spiess S, Reimann J (1996) Regional specialization of intraepithelial T cells in the murine small and large intestine. Scand J Immunol 41:103

    Google Scholar 

  13. Brandtzaeg P, Bosnes V, Halstensen TS, Scott H, Sollid LM, Values KN. (1989) T lymphocytes in the human gut epithelium preferentially express the α/ß antigen receptor and are often CD45/UCHLlpositive. Scand J Immunol 30:123

    Google Scholar 

  14. Brutkiewicz RR, Bennink JR, Yewdell JW, Bendelac A (1995) TAP-independent,ß(2)-microglobulindependent surface expression of functional mouse CD1.1. J Exp Med 182:1913

    Google Scholar 

  15. Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272:60

    Google Scholar 

  16. Camerini V, Panwala C, Kronenberg M (1993) Regional specialization of the mucosal immune system — intraepithelial lymphocytes of the large intestine have a different phenotype and function than those of the small intestine. J Immunol 151:1765

    Google Scholar 

  17. Cebra JJ, Cuff C, Rubin DH (1991) Relationship betweenα/ß T cell receptor/CD8+ precursors for cytotoxic T lymphocytes in the murine Peyer's patches and the intraepithelial compartment probed by oral infection with reovirus. Immunol Res 10:321

    Google Scholar 

  18. Chardes T, Buzonigatel D, Lepage A, Bernard F, Bout D (1994)Toxoplasma gondii oral infection induces specific cytotoxic CD8αß(+) Thy-1(+) gut intraepithelial lymphocytes, lytic for parasite-infected enterocytes. J Immunol 153:4596

    Google Scholar 

  19. Correa I, Bix M, Liao N, Zijlstra M, Jaenisch R, Raulet D (1992) Most γß T cells develop normally in ß2-microglobulin-deficient mice. Proc Natl Acad Sci USA 89:653

    Google Scholar 

  20. Cuff CF, Cebra CK, Rubin DH, Cebra JJ (1993) Developmental relationship between cytotoxicαß T cell receptor-positive intraepithelial lymphocytes and Peyer's patch lymphocytes. Eur J Immunol 23:1333

    Google Scholar 

  21. DeGeus B, Van den Enden M, Coolen C, Nagelkerken L, Van der Heijden P, Rozing J (1990) Phenotype of intraepithelial lymphocytes in euthymic and athymic mice: implications for differentiation of cells bearing a CD3-associatedγ/δ T cell receptor. Eur J Immunol 20:291

    Google Scholar 

  22. Deusch K, Lüling F, Reich K, Classen M, Wagner H, Pfeffer K (1991) A major fraction of human intraepithelial lymphocytes simultaneously expresses theγ/δ T cell receptor, the CD8 accessory molecule and preferentially uses the V61 gene segment. Eur J Immunol 21:1053

    Google Scholar 

  23. Dunon D, Cooper MD, Imhof BA (1993) Thymic origin of embryonic intestinalγ/δ T-cells. J Exp Med 177:257

    Google Scholar 

  24. Ebert EC (1995) Human intestinal intraepithelial lymphocytes have potent chemotactic activity. Gastroenterology 109:1154

    Google Scholar 

  25. Emoto M, Neuhaus O, Emoto Y, Kaufmann SHE (1996) Influence ofß2-microglobulin expression on gamma interferon secretion and target cell lysis by intraepithelial lymphocytes during intestinalListeria monocytogenes infection. Infect Immun 64:569

    Google Scholar 

  26. Fujihashi K, Taguchi T, Aicher W, Mcghee JR, Bluestone JA, Eldridge JH, Kiyono H (1992) Immunoregulatory functions for murine intraepithelial lymphocytes:γ/δ T cell receptor positive (TCR+) T cells abrogate oral tolerance, whileα/ß TCR+ T cells provide B cell help. J Exp Med 175:695

    Google Scholar 

  27. Fujihashi K, Mcghee JR, Kweon MN, Cooper MD, Tonegawa S, Takahashi I, Hiroi T, Mestecky J, Kiyono H (1996)γδ T cell-deficient mice have impaired mucosal IgA responses. J Exp Med 183:1929

    Google Scholar 

  28. Fuller B, Lefrançois L (1995) Requirement for extrathymic class I histocompatibility antigens for positive selection of thymus-derived T lymphocytes. J Immunol 155:2808

    Google Scholar 

  29. Fuss IJ, Neurath M, Boirivant M, Klein JS, Motte C de la, Strong SA, Fiocchi C, Strober W (1996) Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. J Immunol 157:1261

    Google Scholar 

  30. Goodman T, Lefrançois L (1989) Intraepithelial lymphocytes. Anatomical site, not T cell receptor form, dictates phenotype and function. J Exp Med 170:1569

    Google Scholar 

  31. Gramzinski RA, Adams E, Gross JA, Goodman TG, Allison JP, Lefrançois L (1993) T-cell receptortriggered activation of intraepithelial lymphocytes in vitro. Int Immunol 5:145

    Google Scholar 

  32. Guy-Grand D, Cerf-Bensussan N, Malissen B, Malassis-Seris M, Briottet C, Vassalli P (1991) Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. J Exp Med 173:471

    Google Scholar 

  33. Hamann A, Andrew DP, Jablonski-Westrich D, Holzmann B, Butcher EC. (1994) Role of a4-integrins in lymphocyte homing to mucosal tissues in vivo. J Immunol 152:3282

    Google Scholar 

  34. Hein WR, Dudler L, Morris B (1990) Differential peripheral expansion and in vivo antigen reactivity ofα/ß andγ/ß T cells emigrating from the early lamb thymus. Eur J Immunol 20:1805 Hershberg R, Eghtesady P, Sydora B, Brorson K, Cheroutre H, Modlin R, Kronenberg M (1990) Expression of the thymus leukemia antigen in mouse intestinal epithelium. Proc Natl Acad Sci USA 87:9727

    Google Scholar 

  35. Huleatt JW, Lefrançois L (1996)ß32-integrins and ICAM-1 are involved in establishment of the mucosal T cell compartment. Immunity 5:263

    Google Scholar 

  36. Ibraghimov AR, Lynch RG (1994) Heterogeneity and biased T cell receptor αβ repertoire of mucosal CD8+ cells from murine large intestine: implications for functional state. J Exp Med 180:433

    Google Scholar 

  37. Ishikawa H, Li T, Abeliovich S, Yamamoto S, Kaufmann SH, Tonegawa S. (1993) Cytotoxic and interferon-γ-producing activities ofγδ T cells in the mouse intestinal epithelium are strain dependent. Proc Natl Acad Sci USA 90:8204

    Google Scholar 

  38. James SP, Kwan WC, Sneller MC (1990) T cells in inductive and effector compartments of the intestinal mucosal immune system of nonhuman primates differ in lymphokine mRNA expression, lymphokine utilization, and regulatory function. J Immunol 144:1251

    Google Scholar 

  39. Kawaguchi M, Nanno M, Umesaki Y, Matsumoto S, Okada Y, Cai Z, Shimamura T, Matsuoka Y, Ohwaki M, Ishikawa H (1993) Cytolytic activity of intestinal intraepithelial lymphocytes in germ-free mice is strain dependent and determined by T-cells expressingγß-T-cell antigen receptors. Proc Natl Acad Sci USA 90:8591

    Google Scholar 

  40. Komano I, Fujiura Y, Kawaguchi M, et al (1995) Homeostatic regulation of intestinal epithelia by intraepithelialγßT cells. Proc Natl Acad Sci USA 92:6147

    Google Scholar 

  41. Kramer DR, Cebra JJ (1995) Early appearance of “natural” mucosal IgA responses and germinal centers in suckling mice developing in the absence of maternal antibodies. J Immunol 154:2051

    Google Scholar 

  42. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263

    Google Scholar 

  43. Lefrançois L (1991) Intraepithelial lymphocytes of the intestinal mucosa:curiouser and curiouser. Semin Immunol 3:99

    Google Scholar 

  44. Lefrançois L (1991) Phenotypic complexity of intraepithelial lymphocytes of the small intestine. J Immunol 147:1746

    Google Scholar 

  45. Lefrançois L, Goodman T (1989) In vivo modulation of cytolytic activity and Thy-1 expression in TCR-γδ + intraepithelial lymphocytes. Science 243:1716

    Google Scholar 

  46. Lefrançois L, Olson S (1994) A novel pathway of thymus-directed T lymphocyte maturation. J Immunol 153:987

    Google Scholar 

  47. Lefrançois L, Puddington L (1995) Extrathymic intestinal T cell development: virtual reality? Immunol Today 16:16

    Google Scholar 

  48. Lefrançois L, LeCorre R, Mayo J, Bluestone JA, Goodman T (1990) Extrathymic selection of TCR-γ/ß + T cells by class II major histocompatibility complex molecules. Cell 63:333

    Google Scholar 

  49. Lefrançois L, Mayo J, Goodman T (1990) Ontogeny of T cell receptor (TCR)α,ß + andγ,ß + intraepithelial lymphocytes (IEL). In: Lotze MT, Finn OJ (eds) Cellular immunity and the immunotherapy of cancer. Wiley-Liss, New York, pp 31–40

    Google Scholar 

  50. Lefrançois L, Fuller B, Olson S, Puddington L (1996) Development of intestinal intraepithelial lymphocytes. In: Kagnoff MF, Kiyono H (eds) Essentials of mucosal immunology. Academic Press, San Diego, pp 183–193

    Google Scholar 

  51. Li Y, Yio XY, Mayer L (1995) Human intestinal epithelial cell-induced CD8(+) T cell activation is mediated through CD8 and the activation of CD8-associated p56(lck). J Exp Med 182:1079

    Google Scholar 

  52. Lin T, Matsuzaki G, Kenai H, Nakamura T, Nomoto K (1993) Thymus influences the development of extrathymically derived intestinal intraepithelial lymphocytes. Eur J Immunol 23:1968

    Google Scholar 

  53. London S, Cebra JJ, Rubin DH (1989) Intraepithelial lymphocytes contain virus-specific, MHCrestricted cytotoxic T cell precursors after gut mucosal immunization with reovirus serotype 1/Lang. Reg Immunol 2:98

    Google Scholar 

  54. Lundqvist C, Baranov V, Hammarstrom S, Athlin L, Hammarstrom ML (1995) Intra-epithelial lymphocytes. Evidence for regional specialization and extrathymic T cell maturation in the human gut epithelium. Int Immunol 7:1473

    Google Scholar 

  55. Lundqvist C, Melgar S, Yeung MM-W, Hammarstrom S, Hammarstrom M (1996) Intraepithelial lymphocytes in human gut have lytic potential and cytokine profile that suggest T helper 1 and cytotoxic functions. J Immunol 157:1926

    Google Scholar 

  56. Maric I, Holt PG, Perdue MH, Bienenstock J (1996) Class lI MHC antigen (Ia)-bearing dendritic cells in the epithelium of the rat intestine. J Immunol 156:1408

    Google Scholar 

  57. Mayer L, Shlien R (1987) Evidence for function of Ia molecules on gut epithelial cells in man. J Exp Med 166:1471

    Google Scholar 

  58. Mengel J, Cardillo F, Aroeira LS, Williams O, Russo M, Vaz NM (1995) Anti-γß T cell antibody blocks the induction of oral tolerance to ovalbumin in mice. Immunol Lett 48:97

    Google Scholar 

  59. Mixter PF, Camerini V, Stone BJ, Miller VL, Kronenberg M (1994) Mouse T lymphocytes that express a yS T-cell antigen receptor contribute to resistance to salmonella infection in vivo. Infect Immun 62:4618

    Google Scholar 

  60. Mombaerts P, Mizoguchi E, Grusby MJ, Glimcher LH, Bhan AK, Tonegawa S (1993) Spontaneous development of inflammatory bowel disease in T-cell receptor mutant mice. Cell 75:275

    Google Scholar 

  61. Nehls M, Pfeifer D, Schorpp M, Hedrich H, Boehm T (1994) New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372:103

    Google Scholar 

  62. Offit PA, Didzik KI (1989) Rotavirus-specific cytotoxic T lymphocytes appear at the intestinal mucosal surface after rotavirus infection. J Virol 63:3507

    Google Scholar 

  63. Potten CS, Morris RJ (1988) Epithelial stem cells in vivo. J Cell Sci 10:45

    Google Scholar 

  64. Poussier P, Julius M (1995) T-cell development and selection in the intestinal epithelium. Semin Immunol 7:321

    Google Scholar 

  65. Pruitt KM, Rahemtulla F, Mansson-Rahemtulla B (1994) Innate Immoral factors. In: Ogra PL, Lamm ME, McGhee JR, Mestecky J, Strober W, Bienenstock J (eds) Handbook of mucosal immunology. Academic Press, San Diego, pp 53–70

    Google Scholar 

  66. Reinecker H-C, Schreiber S, Stenson WF, MacDermott RP (1994) The role of the mucosal immune system in ulcerative colitis and and Crohn's disease. In: Ogra PL, Lamm ME, McGhee JR, Mestecky J, Strober W, Bienenstock J (eds) Handbook of mucosal immunology. Academic Press, San Diego, pp 439–456

    Google Scholar 

  67. Rocha B, Vassalli P, Guy-Grand D (1991) The Vß repertoire of mouse gut homodimeric CD8+ intraepithelial lymphocytes reveals a major extrathymic pathway of T cell differentiation. J Exp Med 173:483

    Google Scholar 

  68. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I (1993) Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75:253

    Google Scholar 

  69. Sanderson IR, Walker WA (1994) Mucosal barrier. In: Ogra PL, Lamm ME, McGhee JR, Mestecky J, Strober W, Bienenstock J (eds) Handbook of mucosal immunology. Academic Press, San Diego, pp 41–51

    Google Scholar 

  70. Sanderson IR, Ouellette AJ, Carter EA, Walker WA, Harmatz PR (1993) Differential regulation of B7 mRNA in enterocytes and lymphoid cells. Immunology 79:434

    Google Scholar 

  71. Sartor RB (1996) The role of endogenous luminal bacteria and bacterial products in the pathogenesis of experimental enterocolitis and systemic inflammation. In: Kagnoff MF, Kiyono H (eds) Essentials of mucosal immunology. Academic Press, San Diego, pp 307–320

    Google Scholar 

  72. Schild H, Mavaddat N, Litzenberger C, Ehrich EW, Davis MM, Bluestone JA, Matis L, Draper RK, Chien YH (1994) The nature of major histocompatibility complex recognition byγδ6-T-cells. Cell 76:29

    Google Scholar 

  73. Simpson SJ, Mizoguchi E, Allen D, Bhan AK, Terhorst C (1995) Evidence that CD4+, but not CD8+ T cells are responsible for murine interleukin-2-deficient colitis. Eur J Immunol 25:2618

    Google Scholar 

  74. Strober W, Ehrhardt RO (1993) Chronic intestinal inflammation — an unexpected outcome in cytokine or T-cell receptor mutant mice. Cell 75:203

    Google Scholar 

  75. Tanaka Y, Sano S, Nieves E, Delibero G, Rosa D, Modlin RL, Brenner MB, Bloom BR, Morita CT (1994) Nonpeptide ligands for human γδ T cells. Proc Natl Acad Sci USA 91:8175

    Google Scholar 

  76. Tanaka Y, Morita CT, Nieves E, Brenner MB, Bloom BR (1995) Natural and synthetic non-peptide antigens recognized by human γß T cells. Nature 375:155

    Google Scholar 

  77. Targan SR, Deem RL, Liu M, Wang S, Nel A (1995) Definition of a lamina propria T cell responsive state — enhanced cytokine responsiveness of T cells stimulated through the CD2 pathway. J Immunol 154:664

    Google Scholar 

  78. Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Femandezsueiro JL, Balish E, Hammer RE (1994) The germ-free state prevents development of gut and joint inflammatory disease in HLA-1327 transgenic rats. J Exp Med 180:2359

    Google Scholar 

  79. Tonegawa S, Berns A, Bonneville M, et al (1989) Diversity, development, ligands, and probable functions of γδ T cells. Cold Spring Harbor Symp Quant Biol 54:31

    Google Scholar 

  80. Wang J, Klein JR (1994) Thymus-neuroendocrine interactions in extrathymic T cell development. Science 265:1860

    Google Scholar 

  81. Yamamoto K, Fujihashi K, Amano M, Mcghee JR, Beagley KW, Kiyono H (1994) Cytokine synthesis and apoptosis by intestinal intraepithelial lymphocytes: signaling of high-density aβ TCR+ and γß TCR+ T cells via TCR-CD3 complex results in interferon-γ and interleukin-5 production, while low density T cells undergo DNA fragmentation. Eur J Immunol 24:1301

    Google Scholar 

  82. Zeitz M, Greene WC, Peffer NJ, James SP (1988) Lymphocytes isolated from the intestinal lamina propria of normal nonhuman primates have increased expression of genes associated with T-cell activation. Gastroenterology 94:647

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefrançois, L., Fuller, B., Huleatt, J.W. et al. On the front lines: intraepithelial lymphocytes as primary effectors of intestinal immunity. Springer Semin Immunopathol 18, 463–475 (1997). https://doi.org/10.1007/BF00824053

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00824053

Keywords

Navigation