Skip to main content
Log in

Kinetics and mechanisms of the low-temperature degradation of cellulose

  • Review
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A critical review is given of the degradation of cellulose in the low-temperature region (below about 300°C) of power transformer operation. The large number of kinetic studies, under a variety of environmental conditions from Kraft paper in insulating oil, to cotton and paper in oxygen, are considered in terms of a first-order polymer chain scission model. In many cases, the data are replotted to suit the model. A common activation energy of 111±6 kjmol−1 is calculated and it is shown that the pre-exponential factor, rather than the activation energy, is sensitive to the oxidizing nature of the environment and the susceptibility to degradation of the material. The chemical mechanisms of degradation are reviewed, and conclusions and recommendations are made regarding chemical condition monitoring and life prediction of electrical insulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, R. K. (1985) Compensation effect in the pyrolysis of cellulose.Thermochim. Acta. 90, 347.

    Google Scholar 

  • Anet, E. F. L. J. (1961) Degradation of carbohydrates.Aust. J. Chem. 14, 295.

    Google Scholar 

  • Idem (1964)ibid 19, 181.

    Google Scholar 

  • Blazej, A. and Kosik, M. (1985) Degradation reactions of cellulose and lignocellulose. InCellulose and its Derivatives (Kennedy, J. F., ed.). Chichester: Ellis Horwood.

    Google Scholar 

  • Bouvier, B. (1970) Criteria for characterising the degradation of paper insulation.Rev. General Electrique 79(6), 489–496.

    Google Scholar 

  • Broido, A. and Weinstein, M. (1971) Low temperature isothermal pyrolysis of cellulose.Proc. 3rd Int. Conf. on Thermal Analysis 3, 285–296.

    Google Scholar 

  • Burgess, H. D. (1986) GPC-Use in estimating the effect of water washing on the long term stability of cellulsic fibre.Adv. Chem. Ser. 212, 363–376.

    Google Scholar 

  • Burton, P. J., Carballiera, M., Duval, M., Fuller, C. W., Graham, J., de Pablo, A., Samat, J. and Spicar, E. (1988) Application of liquid chromatography to the analysis of electrical insulating materials.Proc. CIGRE Conf., Paris, Paper 15-08.

  • Butsena, A. Ya. and Kulkevits, A. Ya. (1986) Obtaining cellulose by the rapid thermolysis method: 2. Macrokinetics of the process of obtaining glucose from Xylose.Khimia Drevesiny 1, 69–72.

    Google Scholar 

  • Byrne, G. A., Gardiner, D. and Holmes, F. H. (1966) Pyrolysis of cellulose and the action of flame retardants: further identification of products.J. Appl. Chem. 16, 81.

    Google Scholar 

  • Calahorra, M. E., Cortazar, M., Eguiazabal, J. I. and Guzman, G. M. (1989) Thermogravimetric analysis of cellulose: Effect of molecular weight on thermal decomposition.J. Appl. Polymer Sci. 37, 3305–3314.

    Google Scholar 

  • Chang, M. (1971) Folding chain model and annealing of cellulose.J. Polymer Sci. C 7(36), 343.

    Google Scholar 

  • Chang, M. Y. (1974) Crystallite structure of cellulose.J. Polymer Sci. 12, 1349.

    Google Scholar 

  • Chornet, E. and Roy, C. (1980) Compensation effect in the thermal decomposition of cellulosic material.Thermochim. Acta. 35(3), 389–393.

    Google Scholar 

  • Conley, R. T. (1970) Thermal and thermo-oxidative degradation of cellulosic polymers.Monographs in Macromolecular Chemistry, Thermal Stabilization of Polymers 1, 523.

    Google Scholar 

  • Cosgrove, J. D., Head, B. C., Lewis, T. J., Graham, S. G. and Warwicker, J. O., A GPC study of cellulose degradation. InCellulose and its Derivatives (Kennedy, J. F. ed.). Chichester: Ellis Horwood, pp. 143–151.

  • Darveniza, M., Saha, T. K., Hill, D. J. T. and Le, T. T., Assessment of insulation in aged power transformers by interfacial polarization spectra and correlation with chemical properties.Proc. 6th Int. DMMA Conf., Manchester, 1992, pp. 233–236.

  • David, P. K. (1987) Correlation of Arrhenius parameters: the electrochemical ageing compensation effect,IEEE Trans. Elec. Insul. E2–22(3), 229.

    Google Scholar 

  • Ekamstam, A. (1936) The behaviour of cellulose in mineral acid solutions: Kinetics study of the decomposition of cellulose in acid solution.Ber. 69, 553.

    Google Scholar 

  • Elema, R. J. (1973) A model for the degradation of cotton cellulose.J. Polymer Sci. Symp. 42, 1545.

    Google Scholar 

  • Emsley, A. M. and Stevens, G. C. (1994) A review of chemical indicators of degradation of cellulosic electrical paper insulation in oil-filled transformers. IEE J. To be published.

  • Erofeev, B. V., Shishko, A. M., Volkovich, S. M., Pesnyakevich, L. G. and Matskevich, D. V. (1982) Reactivity of the amorphous regions of cellulose.Reports of the Academy of Sciences of the Byelorussian SSR, (Vestsi Akd. Navuk Ussr, Ser, Khim, Navuk 1, 12–16.

    Google Scholar 

  • Fabre, J. and Pichon, A. (1960) Deteriorating processes and products of paper in oil,CIGRE Conference Paper 137.

  • Fallou, B. (1970) Synthesis of work carried out at LCIE on paper degradation.Rev. General Electrique 79, 645.

    Google Scholar 

  • Feller, R. L., Lee, S. B. and Bogaard, J. Kinetics of cellulose deterioration.J. Adv. Chem. Ser. 212, 329.

  • Freedman A. N., Gaseous degradation products from the degradation of insulation materials used in electrical generators (1978)J. Chromatography 157(1), 85–96.

    Google Scholar 

  • Freudenberg, K., Kuhn, W., Durr, W., Bolz, F. and Steinbrunn, G. (1930) Hydrolysis of polysaccharides.Ber. 63, 1510.

    Google Scholar 

  • Fukuchi, H., Tsukai, S., Okada, K. and Tanimoto, T. (1977) Thermal degradation products of a glucose solution,Hiroshima J. Anesthesia 13(1), 3.

    Google Scholar 

  • Fung, D. P. C. (1969) Kinetics and mechanisms of thermal degradation of cellulose in vacuo.TAPPI 52, 319.

    Google Scholar 

  • Gibbons, J. A. M. and Schroff, D. H. (1988), private communication.

  • Glassner, S. and Pierce, A. R. (1965) Gas Chromatographic analysis of products from the controlled application of heat to cellulose and laevoglucosan.Anal. Chem. 37, 525.

    Google Scholar 

  • Golova, O. P. and Krylova, R. G. (1957) Thermal decomposition of cellulose and its structure.Dokl. Akad. Nauk SSSR 116, 419.

    Google Scholar 

  • Golova, O. P., Pakhomov, A. M., Andrievskaya, E. A. and Kryova, R. G. (1957) On the mechanisms of thermal decomposition of cellulose under vacuum and the formation of laevoglucosan.ibid 115, 809.

    Google Scholar 

  • Hanna, A. A., Abd-el-Wahid, A. and Abbass, M. H. (1984) Thermal degradation of some celluloic materials.Cellulose Chem. Tech. 18, 11–20.

    Google Scholar 

  • Hatakeyama, T., Ikeda, Y. and Hatakeyama, H. (1987) Structural change in the amorphous region of cellulose in the absence of water. InWood and Cellulosics (Kennedy, J. F. ed.). Ellis Horwood, Chichester, pp. 23–30.

    Google Scholar 

  • Hernadi, S. (1976) Thermal ageing in oxygen of paper made from cellulose at different degrees of beating.Svensk Papperstidning 79(13), 418–423.

    Google Scholar 

  • Hino, T. and Suganuma, T. (1972) Rapid measurement of deterioration of oil immersed paper.IEEE Trans. Elec. Insul. 7(3), 122–126.

    Google Scholar 

  • Idem (1967) A mass spectroscopic/gas Chromatographic study of thermal degradation of electrical insulating papers in oil.Shinku Kagaku 15(2), 49–55.

    Google Scholar 

  • Houminer, Y. and Patai, S. (1969) Pyrolytic reaction of carbohydrates: 2. Thermal decomposition of D-glucose.Israel. Chem. 7(4), 513.

    Google Scholar 

  • Irklei, V. M., Reznik, K. Ya., Starunskay, T. P. and Krymov, A. V. (1982) Kinetics of degradation of alkali cellulose.Khimistry Volokna 3, 26–27.

    Google Scholar 

  • Jackson, J. P., Arthurs, E., Schwalbe, L. A., Sega, R. M., Windisch, D. E., Long, W. H. and Stappaerts, E. A. (1988) Infrared laser heating for studies of cellulose degradation.Applied Optics 27(18), 3937.

    Google Scholar 

  • Idem (1988) A new tool for cellulose degradation studies.Mat. Res. Soc. Symp. Proc. 123, 311–316.

    Google Scholar 

  • Kato, K. and Komorita, H., Pyrolysis of cellulose 5: Isolation and identification of 3-deoxyglycosones from cellulose, glucose and xylose by heating (1968)Agricultural and Biol. Chem. 32(2), 715.

    Google Scholar 

  • Kilzer, F. J. (1971) Thermal degradation of cellulose. InHigh polymers (Bikales, N. M. and Segal, L. eds.).5, Pt5, p. 1015.

  • Kilzer, F. J. and, Broido, A. (1965) Speculations on the nature of cellulose pyrolysis.Pyrodynamics 2, 151.

    Google Scholar 

  • Kosik, M., Surina, I. and Blazej, A. (1983) Thermolytic reactions of cellulose.Chemia Listy 77, 178.

    Google Scholar 

  • Krassig, H. (1985) Structure of cellulose and its relation to the properties of cellulose fibres. InCellulose and its Derivatives (Kennedy, J. F. ed.). Chichester: Ellis Horwood, pp. 3–26.

    Google Scholar 

  • Kuhn, W. (1930) On the kinetics of reduction of high molecular weight chains.Ber. 63, p. 1503.

    Google Scholar 

  • Lawther, J. M., White, C. A., Rivera, Z. S. and Jumel, K. (1990) Molecular weight determination of cellulose using high performance SEC, GPC and viscometry. Cellucon89.

  • Le Guennec, P. (1990), private communication.

  • Lewellen, P. C., Peters, W. A. and Howard, J. B. (1977) Cellulose combustion kinetics and char formatio mechanisms.Proc. Symp. Int. Combustion Conf. 16, 1471–1480.

    Google Scholar 

  • Maciejewski, Z., Krol, P. and Rutkowska, E. (1981) Study of furfural formation from pentosans.Przemysl Chemiczny 60(4), 203–206.

    Google Scholar 

  • MacKay, G. D. M., Mechanism of degradation of cellulose (1967)Canadian Department of Forestry publication, No. 1201.

  • Madorsky, S. L., Hart, V. E. and Strauss, S. (1956) Pyrolysis of cellulose.J. Res. NBS 56, 343.

    Google Scholar 

  • Major, W. D. (1958) Degradation of cellulose in oxygen and nitrogen at high temperatures.TAPPI 41, 530.

    Google Scholar 

  • Manley, R. (1963) Growth and morphology of single crystals of cellulose tri-acetate.J. Polymer Sci. Part A 1, 1875–1892.

    Google Scholar 

  • Marx-Figini, M. and Coun-Matus, M. (1981) On the kinetics of hydrolytic degradation of native cellulose.Makromolecular Chem. 182, 3603.

    Google Scholar 

  • Michie, R. I. C., Sharpies, A. and Walter, A. A. (1961) The nature of acid-sensitive linkages in cellulose.J. Polymer Sci. 51, 85.

    Google Scholar 

  • Miyoshi, A. (1975) A new additive for improving the thermal ageing characteristics of insulating paper.IEEE Trans. Elec. Insul. E1–10(1), 13.

    Google Scholar 

  • Montanari, G. C. (1990) A new thermal life model derived by the ageing compensation effect.ibid 25(2), 309.

    Google Scholar 

  • Moser, H. P. and Dahinden, V. (1988)Transformerboard 2. H. Weidmann, AG, CH-8640 Rappers vil.

  • Moye, C. J. (1964) 5-hydroxy-methyl-furfural.Rev. Pure Appl. Chem. 14, 161.

    Google Scholar 

  • Murphy, E. J. (1962) Thermal decomposition of natural cellulose in vacuo.J. Polymer Sci. 58, 649–665.

    Google Scholar 

  • Nevell, T. P. (1985) Degradation of cellulose by acids, alkalis and mechanical means. InCellulose Chem and its Applications (Nevell, T. P. ed.). Ellis Horwood, pp. 225–241.

  • Noller, C. R. (1965),Chemistry of Organic Compounds. Philadelphia and London: W. B. Saunders.

    Google Scholar 

  • Okamura, K. (1989) The structure of cellulose.J. Japanese Wood Res. Soc..35(7), 589–594.

    Google Scholar 

  • Pacault, A. and Sauret, G. (1958) Study of thermal depolymerisation of cellulose.Compt. Rendue Acadamie des Sciences 246, 608.

    Google Scholar 

  • Paloniemi, P. (1972) Isothermal differential calorimetry as a means of measuring insulation ageing down to operating temperatures.IEEE Trans. Elec. Insul. E1–7(3), 126.

    Google Scholar 

  • Pavlath, A. E. and Gregorski, K. S. (1988) Carbohydrate pyrolysis: Formation of furfural and furfuryl alcohol during pyrolysis of hydrocarbons with acidic and basic catalysts.Conference on Research on Thermochemical Biomass Conversion, 1988, pp. 155–163.

  • Ranby, B. G. (1961) Weak links in polysaccharide chains related to modified groups.J. Polymer Sci. 53, 131.

    Google Scholar 

  • Rogers, F. E. and Ohlemiller, F. (1980) Cellulosic insulation material: 1. Overall degradation kinetics and reaction heats.Combustion Sci. Tech..24(3/4), 129–137.

    Google Scholar 

  • Rowland, S. P. and Roberts, E. J. (1972) The nature of accessible surfaces in the microstructure of native cellulose.J. Polymer Sci. A 10, 2447–2461.

    Google Scholar 

  • Roze, I. M., Vedernikov, N. A., Alekhina, T. V. and Popov, S. S. (1988) Hydrolytic degradation of Birchwood polysaccharides.Khimia Drevesiny 2, 76–80.

    Google Scholar 

  • Saad, S. M. and El-Khloy, A. E. (1980) Kinetic investigation of thermal ageing of unbleached Egyptian Kraft bagasse paper: Part 2 Effect of ageing on chemical and mechanical properties.Holzforschung 34(4), 147–149.

    Google Scholar 

  • Saad, S. M., El-Anwar, I. M. and Metwally, N. E. (1979) Evaluation of unbleached Egyptian Kraft bagasse paper pulp.Holzforschung 33, 125.

    Google Scholar 

  • Sarko, A. (1987) Cellulose — How much do we know about its structure? InWood and Cellulosics (Kennedy, J. F. ed.) Ellis Horwood, pp. 55–70.

  • Schroff, D. H. and Stannett, A. W. (1985) Review of paper ageing in power transformers.IEE Proc. C., G.B.,132(6), 312–319.

    Google Scholar 

  • Schultz, G. V. (1948) Kinetics of cellulose degradation and periodic structure of cellulose molecules.J. Polymer Sci. 3, 365.

    Google Scholar 

  • Schwenker, R. F. and Beck, L. R. (1963) Study of the pyrolytic degradation of cellulose by gas chromatography.J. Polymer Sci. C 2, 331–340.

    Google Scholar 

  • Shafizadeh, F. (1985) Thermal degradation of cellulose. InCellulose Chemistry and its Applications (Nevell, T. P. ed.). Ellis Horwood, pp. 266–289.

  • Shafizadei, F. and Bradbury, A. G. W. (1979) Thermal degradation of cellulose in air and nitrogen at low temperatures.J. Appl. Polymer Sci. 23, 1431.

    Google Scholar 

  • Shafizadeh, F. and Lai, Y. Z. (1972) Thermal degradation of 1,6-anhydro-β-d-glucopyranose.J. Organic Chem. 37(2), 278.

    Google Scholar 

  • Shafizadeh, F., Philpot, C. W. and Ostonjic, N. (1971) Thermal analysis of 1,6-anhydro-β-d-glucopyranose.Carbohydrate Res. 16, 279–287.

    Google Scholar 

  • Shafizadeh, F., Furneaux, R. H., Cochran, T. G., Scholl, J. P. and Yoshio, S. (1979) Production of laevoglucosan and glucose from pyrolysis of cellullosic materials.J. Appl. Polymer Sci. 23(12), 3525–3539.

    Google Scholar 

  • Shinouda, H. G. (1976) Kinetic study of the heterogeneous hyfrolysis of cellulose fibres.Cellulose Chem. Tech. 10, 479.

    Google Scholar 

  • Shivadev, U. K. and Emmons, H. W. (1974) Thermal degradation and spontaneous ignition of paper sheets in air by irradiation.Combustion and Flame 22, 223.

    Google Scholar 

  • Simon, I., Scheraga, H. A. and Manley, J. St. J. (1988a) Structure of cellulose 1: Low energy conformations of single chains.Macromolecules 21, 983–990.

    Google Scholar 

  • Idem (1988b) Structure of cellulose 2: Low energy crystalline arrangements,ibid, 990–999.

    Google Scholar 

  • Stamm, A. J. (1956) Thermal degradation of wood and cellulose.Ind. Eng. Chem. 48, 413.

    Google Scholar 

  • Sugiyama, J., Harada, H. and Saiki, H. (1987) Crystalline structure of Valonis Macrophysa cellulose III, revealed by direct lattice imaging,Int. J. Biol. Macromolecules 9, 122.

    Google Scholar 

  • Sugiyama, J., Persson, J. and Chanzy, H. (1991) Combined IR and electron diffraction study of the polymorphism of native cellulose.Macromolecules 24, 2461–2466.

    Google Scholar 

  • Tamura, R., Anetai, H., Ishii, T. and Kawawmura, T. (1981) Diagnosis of ageing deterioration of insulating paper.IEE J. 101-A, 30–36.

    Google Scholar 

  • Unsworth, J. and Mitchell, F. (1990) Degradation of electrical insulating material monitored with high performance chromatography.IEEE Trans., Elec. Insul. 25(4), 737.

    Google Scholar 

  • Vergne, J., Chen, B., Grob, R., le Guennec, P., Rouvier, M. and Rigal, L. (1991), private communication.

  • Yoshida, H., Ishioka, Y., Suzuki, T., Yanari, T. and Teranishi, T. (1987) Degradation of insulating materials of transformers.IEEE Trans. Elec. Insul. E1–22(6), 795.

    Google Scholar 

  • Zhilyaev, T. B., Linova, L. S., Granovskaya, V. N. and Golovan, N. I. (1983) Investigation of cellulosic electrical insulation materials.Electrotechnika (USSR)54(10), 74–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emsley, A.M., Stevens, G.C. Kinetics and mechanisms of the low-temperature degradation of cellulose. Cellulose 1, 26–56 (1994). https://doi.org/10.1007/BF00818797

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00818797

Keywords

Navigation