Skip to main content
Log in

Computer simulation of histo-blood group oligosaccharides: energy maps of all constituting disaccharides and potential energy surfaces of 14 ABH and Lewis carbohydrate antigens

  • Glycoconjagate Journal
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The three-dimensional structures of fourteen histo-blood groups carbohydrate antigens have been established through a combination of molecular mechanics and conformational searching methods. The conformational space available for each disaccharide, constituents of these determinants, has been throroughly characterized. The results have been organized in a data bank fashion. Larger relatives, i.e. 14 tri- and tetrasaccharides of histo-blood group antigens, have been modelled using a different method for exploring the complex potential energy surface. This approach is aimed at establishing all the possible families of conformations, along with the conformational pathways. Different conformational behaviours are exhibited by these oligosaccharides. Some of them, i.e. LeX and LeY tri and tetrasaccharides, are very rigid; 99% of their populations belong to the same conformational family. Others, like H type 1, H type 2 or H type 6 oligosaccharides, are essentially rigid, but a secondary conformational family, corresponding to 3–4% of the total population, can arise. Finally, the H types 3 and 4 trisaccharides, and the A type 1 and A type 2 tetrasaccharides are predicted to behave rather flexibly. The information gathered in the present investigation has been used to analyse the body of experimental evidence, either physical or biological, available for this series of carbohydrate antigens. Of special interest are the several different alignments that can be proposed for these molecules. They yield a realistic definition of the three-dimensional features of the epitopes thereby providing essential information about how carbohydrate antigens are recognized by proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. King M-J (1994)Biochim Biophys Acta 1197:15–44.

    Google Scholar 

  2. Clausen H, Hakomori S (1989)Vox Sang 56:1–20.

    Google Scholar 

  3. Oriol R, Le Pendu J, Mollicone R (1986)Vox Sang 51:161–71.

    Google Scholar 

  4. Oriol R (1995) InBlood Cell Biochemistry Vol 6 (Cartron JP, Rouger P, eds) pp. 37–73. New York: Plenum Press

    Google Scholar 

  5. Oriol R, Cooper D, Davies JE, Keeling PWN (1984)Lab Invest 50:514–18.

    Google Scholar 

  6. Lasky LA (1992)Science 258:964–69.

    Google Scholar 

  7. Yuen, C-T, Bezouska K, O'Brien J, Stoll M, Lemoine R, Lubineau A, Kiso M, Hasegawa A, Bockovich NJ, Nicolaou KC, Feizi T (1993)J Biol Chem 269:1596–98.

    Google Scholar 

  8. Hakomori S (1989)Adv Cancer Res 52:257–331.

    Google Scholar 

  9. Lemieux RU, Bock K, Delbaere LTJ, Koto S, Rao VS (1980)Can J Chem 58:631–53.

    Google Scholar 

  10. Biswas M, Rao VSR (1980)Biopolymers 19:1555–65

    Google Scholar 

  11. Rao VSR, Biswas M (1985)Top Mol Struct Biol 8:185–218.

    Google Scholar 

  12. Yan Z-Y, Bush CA (1990)Biopolymers 29:799–811.

    Google Scholar 

  13. Cagas P, Bush CA (1992)Biopolymers 32:277–92.

    Google Scholar 

  14. Berg EL, Robinson MK, Mansson O, Butcher EC, Magnani JL (1991)J Biol Chem 266:14869–72.

    Google Scholar 

  15. Rutherford TJ, Spackman DG, Simpson PJ, Homans SW (1994)Glycobiology 4:59–68.

    Google Scholar 

  16. Kogelberg H, Rutherford TJ (1994)Glycobiology 4:49–57.

    Google Scholar 

  17. Toma L, Ciuffreda P, Colombo D, Ronchetti F, Lay L, Panza L (1994)Helv Chim Acta 77:668–78.

    Google Scholar 

  18. Imberty A, Bourne Y, Cambillau C, Rougé P, Pérez S (1993)Adv Biophys Chem 3:71–117.

    Google Scholar 

  19. Bourne Y, Rougé P, Cambillau C (1992)J Biol Chem 267:197–203.

    Google Scholar 

  20. Cooke RM, Hale RS, Lister SG, Shah G, Weir MP (1994)Biochemistry 33:1051–96.

    Google Scholar 

  21. Bundle DR, Baumann H, Brisson J-R, Gagné SM, Zdanov A, Cygler M (1994)Biochemistry 33:5183–92.

    Google Scholar 

  22. MM3(1992), QCPE, Creative Arts Building 181, Indiana University, Bloomington, IN 47405, USA.

  23. Allinger NL, Yuh YH, Lii JH (1989)J Am Chem Soc 111:8551–66.

    Google Scholar 

  24. Pérez S, Imberty A, Carver JP (1994)Adv Comput Biol 1:146–202.

    Google Scholar 

  25. French AD, Dowd MK (1993)J Mol Struct (Theochem)286:183–201.

    Google Scholar 

  26. Koča J (1994)J Mol Struct (Theochem)308:13–24.

    Google Scholar 

  27. Koča J, Pérez S, Imberty A (1995)J Comp Chem 16:296–310.

    Google Scholar 

  28. Pérez S, Delage M-M (1991)Carbohydr Res 212:253–59.

    Google Scholar 

  29. IUPAC-IUB (1971) Commission on Biochemical Nomenclature.Arch Biochem Biophys 145:405–21.

    Google Scholar 

  30. Marchessault RH, Pérez S (1979)Biopolymers 18:2369–74.

    Google Scholar 

  31. Koča J (1993)J Mol Struct 291:255–69.

    Google Scholar 

  32. Imberty A, Pérez S (1994)Glycobiology 4:351–66.

    Google Scholar 

  33. SYBYL 6.04, Tripos Associates, 1699 S. Hanley Road, Suite 303, St Louis, MO 63144, USA.

  34. Lemieux RU, Koto S, Voisin D (1979) InAnomeric Effect, Origin and Consequences ACS Symposium Series Vol 87 (Szarek A, Horton D, eds) pp. 17–29. Washington DC: American Chemical Society.

    Google Scholar 

  35. Delbaere LTJ, Vandonselaar M, Prasad L, Quail JW, Wilson KS, Dauter Z (1993)J Mol Biol 230:950–65.

    Google Scholar 

  36. Scheifer L, Senderowitz H, Aped P, Tartakowsky E, Fuchs B (1990)Carbohydr Res 206:21–39.

    Google Scholar 

  37. Brünger AT, Krukowski A, Erikson JW (1990)Acta Crystallogr A 47:585–93.

    Google Scholar 

  38. Rao BNN, Dua VK, Bush CA (1985)Biopolymers 24:2207–29.

    Google Scholar 

  39. Cagas P, Kaluarachchi K, Bush CA (1991)J Am Chem Soc 113:6815–22.

    Google Scholar 

  40. Ejchart A, Dabrowski J, von der Lieth C-W (1992)Magn Res Chem 30:S105–14.

    Google Scholar 

  41. Cagas P, Bush CA (1990)Biopolymers 30:1123–38.

    Google Scholar 

  42. Homans SW, Forster MJ (1992)Glycobiology 2:143–51.

    Google Scholar 

  43. Miller KE, Mukhopadhyay C, Cagas P, Bush CA (1992)Biochemistry 31:6703–9.

    Google Scholar 

  44. Yan Z-Y, Rao BNN, Bush CA (1987)J Am Chem Soc 109:7663–69.

    Google Scholar 

  45. Hagler AT, Lifson S, Dauber P (1979)J Am Chem Soc 101:5122–30.

    Google Scholar 

  46. Allinger NL, (1977)J Am Chem Soc 99:8127–34.

    Google Scholar 

  47. Bush CA, Yan Z-Y, Rao BNN (1986)J Am Chem Soc 108:6168–73.

    Google Scholar 

  48. Oriol R, Samuelsson BE, Messeter L (1990)J Immunogen 17:279–99.

    Google Scholar 

  49. Good AH, Yau O, Lamontagne LR, Oriol R (1992)Vox Sang 62:180–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imberty, A., Mikros, E., Koca, J. et al. Computer simulation of histo-blood group oligosaccharides: energy maps of all constituting disaccharides and potential energy surfaces of 14 ABH and Lewis carbohydrate antigens. Glycoconjugate J 12, 331–349 (1995). https://doi.org/10.1007/BF00731336

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731336

Keywords

Navigation