Skip to main content
Log in

Acetylcholine as sensory transmitter in crustacea

New evidence from experiments demonstrating release of ACh during sensory stimulation

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    A method is described for the perfusion of the thoracic ganglia of crabs (Cancer, Pugettia, Portunus, Callinectes, Eriphia) through the sternal artery.

  2. 2.

    Administration of acetylcholine (ACh)via perfusion elicits leg movements. The effect is enhanced by the anticholinesterase eserine. Eserine alone causes great enhancement of reflex activity.

  3. 3.

    Eserinized perfusate collected during periods of sensory stimulation (optical or tactile stimuli) contained ACh as detected by bioassay on isolated mollusc ventricles. Up to 2 × 10−9 g of ACh were liberated per minute. No ACh was detectable in perfusates collected from quiescent, unstimulated crabs (detection limit 1−10 × 10−11g/ml) or from stimulated crabs when the perfusion fluid contained no eserine. Eserine itself had no effect on the heart preparations used.

  4. 4.

    The demonstration of a release of ACh from the central nervous system of crabs during sensory stimulation represents the last missing link in the evidence (which is fully reviewed) that ACh is the transmitter substance of sensory neurons in decapod crustacea and, presumably, in other arthropod groups as well.

Zusammenfassung

  1. 1.

    Es wird eine Methode beschrieben, die es erlaubt, die Thorakalganglien von Krabben (Cancer, Pugettia, Portunus, Callinectes, Eriphia) über die Sternal-Arterie zu perfundieren.

  2. 2.

    Applikation von Azetylcholinvia Perfusion ruft Beinbewegungen hervor. Diese Wirkung wird verstärkt durch Eserin (Cholinesterasehemmer). Eserin selbst bewirkt eine erhebliche Verstärkung der Reflexaktivität.

  3. 3.

    Eserinisiertes Perfusat, das während Perioden optischer oder mechanischer Reizung gewonnen wurde, enthielt ACh, das im Biotest an isolierten Ventrikeln von Mollusken nachgewiesen werden konnte. Bis zu 2 × 10−9 g ACh wurden pro Minute freigesetzt. In Perfusaten, die von ungereizten, ruhenden Krabben oder von gereizten Krabben erhalten wurden, wenn die Perfusionsflüssigkeit kein Eserin enthielt, konnte kein ACh nachgewiesen werden (Nachweisgrenze l −10 × 10−11 g/ml).

  4. 4.

    Der Nachweis der Freisetzung von ACh im Zentralnervensystem von Krabben während sensorischer Reizung liefert das letzte noch fehlende Glied in der Beweisführung (die in der Arbeit ausführlich dokumentiert wird), daß ACh die Transmitter-Substanz der sensorischen Neurone der dekapoden Krebse, und vermutlich auch der anderen Arthropodengruppen, darstellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker, D. L., Herbert, E., Hildebrand, J. G., Kravitz, E. A.: Acetylcholine and lobster sensory neurones. J. Physiol. (Lond.), in press (1972).

  • Birks, R., Macintosh, F. C.: Acetylcholine metabolism of a sympathetic ganglion. Canad. J. Biochem.39, 787–827 (1961).

    Google Scholar 

  • Bonnet, V.: Contribution à l'étude du système nerveux ganglionnaire des crustacés. Arch. int. Physiol.47, 397–433 (1938).

    Google Scholar 

  • Bullock, T. H., Grundfest, H., Nachmansohn, D., Rothenburg, M. A.: Effect of di-isopropyl fluorphosphate (DFP) on action potential and cholinesterase of nerve, II. J. Neurophysiol.10, 63–78 (1947).

    Google Scholar 

  • Callec, J., Boistel, J.: Les effects de l'acétylcholine aux niveaux synaptique et somatique dans le cas dernier ganglion abdominal de la Blatte,Periplaneta americana. C. R. Soc. Biol. (Paris)161, 157–181 (1967).

    Google Scholar 

  • Case, J.: Properties of the dactyl chemoreeeptors ofCancer antennarius Stimpson andC. productus Randall. Biol. Bull.127, 428–446 (1964).

    Google Scholar 

  • Chiang, P. K.: Some pharmacological properties of the nerve cord of the cockroach,Periplaneta americana (L.). Questiones entomol.5, 263–306 (1969).

    Google Scholar 

  • Colhoun, E. H.: The physiological significance of acetylcholine in insects and observations upon other pharmacologically active substances. Adv. Insect Physiol.1, 1–46 (1963).

    Google Scholar 

  • Easton, D. M.: Synthesis of acetylcholine in crustacean nerve and nerve extract. J. biol. Chem.185, 813–816 (1950).

    Google Scholar 

  • Ellis, C. H., Thienes, C. H., Wiersma, C. A. G.: The influence of certain drugs on the crustacean nerve-muscle system. Biol. Bull.83, 334–352 (1942).

    Google Scholar 

  • Evoy, W., Beránek, R.: Pharmacological localization of excitatory and inhibitory synaptic regions in crayfish slow abdominal flexor muscle-fibres. Comp. gen. Pharmac.3, 178–186 (1972).

    Google Scholar 

  • Fatt, P., Katz, B.: The electrical properties of crustacean muscle fibres. J. Physiol. (Lond.)120, 171–204 (1953).

    Google Scholar 

  • Elattum, R. F., Friedman, S., Larsen, J. R.: The effects of d-tubocurare chloride on nervous activity and muscular contraction in the house cricketAcheta domesticus (L.). Life Sci.6, 1–9 (1967).

    Google Scholar 

  • Florey, E.: Comparative neurochemistry: inorganic ions, amino acids and possible transmitter substances of invertebrates. In: Neurochemistry, 2nd ed., p. 673–693, ed. Elliott, K. A. C., I. H. Page and J. H. Quastel. Springfield, Ill.: C. C. Thomas 1962.

    Google Scholar 

  • Florey, E.: Acetylcholine in invertebrate nervous systems. Canad. J. Biochem. Physiol.41, 2619–2626 (1963).

    Google Scholar 

  • Florey, E.: The clam-heart bioassay for acetylcholine. Comp. Biochem. Physiol.20, 365–377 (1967).

    Google Scholar 

  • Florey, E., Biederman, M. A.: Studies on the distribution of Factor I and acetylcholine in crustacean peripheral nerve. J. gen. Physiol.43, 509–522 (1960).

    Google Scholar 

  • Futamachi, K. J.: Acetylcholine: possible neuromuscular transmitter in Crustacea. Science172, 1373–1375 (1972).

    Google Scholar 

  • Gardiner, J. E.: The inhibition of acetylcholine synthesis in brain by hemicholinium. Biochem. J.81, 297–303 (1961).

    Google Scholar 

  • Hichar, J. K.: Spontaneous electrical activity in the crayfish central nervous system. J. cell. comp. Physiol.55, 195–206 (1960).

    Google Scholar 

  • Katz, B.: Neuromuscular transmission in crabs. J. Physiol. (Lond.)87, 199–221 (1936).

    Google Scholar 

  • Kerkut, G. A., Pittman, R. M., Walker, R. J.: Iontophoretic application of acetylcholine and GABA onto insect central neurones. Comp. Biochem. Physiol.31, 611–633 (1969).

    Google Scholar 

  • Keyl, M. J., Michaelson, I. A., Whittaker, V. P.: Physiologically active choline esters in certain marine gastropods and other invertebrates. J. Physiol. (Lond.)139, 434–454 (1957).

    Google Scholar 

  • Knowlton, F. P.: The action of certain drugs on crustacean muscle. J. Pharmacol. exp. Ther.75, 154–160 (1942).

    Google Scholar 

  • Larsen, J. R., Miller, D. A., Yamamoto, T.: d-Tubocurarine chloride: Effect on insects. Science152, 225–226 (1966).

    Google Scholar 

  • Marnay, A., Naohmansohn, D.: Cholinestérase dans le nerf de homard. C. R. Soc. Biol. (Paris)125, 1005 (1937).

    Google Scholar 

  • Maynard, E. A.: Microscopic localization of cholinesterases in the nervous systems of the lobsters,Panulirus argus andHomarus americanus. Tissue and Cell3, 215–250 (1971).

    Google Scholar 

  • McCann, F. V.: Curare as a neuromuscular blocking agent in insects. Science154, 1023–1024 (1966).

    Google Scholar 

  • McCann, F. V., Reece, R. W.: Neuromuscular transmission in insects: effect of injected chemical agents. Comp. Biochem. Physiol.21, 115–124 (1967).

    Google Scholar 

  • Prosser, C. L.: Action potentials in the nervous system of the crayfish. J. cell. comp. Physiol.16, 25–38 (1940).

    Google Scholar 

  • Richards, A. G., Cutkomp, L. K.: The cholinesterase of insect nerves. J. cell. comp. Physiol.26, 57–61 (1945).

    Google Scholar 

  • Riker, W. F., Okamoto, M.: Pharmacology of motor nerve terminals. Pharmacol. Rev.9, 173–208 (1969).

    Google Scholar 

  • Smallman, B. N.: Mechanism of acetylcholine synthesis in the blowfly. J. Physiol. (Lond.)132, 343–357 (1956).

    Google Scholar 

  • Sorenson, A. L.: Demonstration of an action of acetylcholine on the central nervous system of a crab. Biol. Bull., in press (1973).

  • Tobias, J. M., Kollros, J. I., Savit, I.: Acetylcholine and related substances in the cockroach, fly and crayfish and the effect of DDT. J. cell. Comp. Physiol.28, 159–182 (1946).

    Google Scholar 

  • Treherne, J. E.: The neurochemistry of arthropods. 156 pp. Cambridge: University Press 1966.

    Google Scholar 

  • Turner, R. S., Hagins, W. A., Moore, A. R.: Influence of certain neurotropic substances on central and synaptic transmission inCallianassa. Proc. Soc. exp. Biol. (N.Y.)73, 156–518 (1950).

    Google Scholar 

  • Walop, J. N.: Studies on acetylcholine in the crustacean central nervous system. Arch. int. Physiol.59, 145–156 (1951).

    Google Scholar 

  • Welsh, J. H.: Occurrence of acetylcholine in nervous tissue of crustaceans and its effect on the crab heart. Nature (Lond.)142, 151 (1938).

    Google Scholar 

  • Welsh, J. H.: Chemical mediation in crustaceans. I. The occurrence of acetylcholine in nervous tissue and its action on the decapod heart. J. exp. Biol.16, 198–219 (1939).

    Google Scholar 

  • Welsh, J. H., Taub, R.: The action of acetylcholine antagonists on the heart ofVenus mercenaria. Brit. J. Pharmacol.8, 327–333 (1953).

    Google Scholar 

  • Wiersma, C. A. G., Pilgrim, R. L. C.: Thoracic stretch receptors in crayfish and rock lobsters. Comp. Biochem. Physiol.2, 51–64 (1961).

    Google Scholar 

  • Wiersma, C. A. G., Furshpan, E., Florey, E.: Physiological and pharmacological observations on muscle receptor organs of the crayfish,Cambarus clarkii Girard. J. exp. Biol.30, 136–150 (1953).

    Google Scholar 

  • Wright, E. B.: The action of erythroidin, curare, and chlorobutanol in the crayfish. J. cell. comp. Physiol.33, 301–332 (1949).

    Google Scholar 

  • Yamasaki, T., Narahashi, T.: Synaptic transmission in the last abdominal ganglion of the cockroach. J. Ins. Physiol.4, 1–13 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by a grant from the United States Public Health Service, National Institutes of Health, NB-1451, and by a grant from the Deutsche Forschungsgemeinschaft through the Forschergruppe “Biologische Grenzflächen und Spezifität”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Florey, E. Acetylcholine as sensory transmitter in crustacea. J. Comp. Physiol. 83, 1–16 (1973). https://doi.org/10.1007/BF00694568

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00694568

Keywords

Navigation