Skip to main content
Log in

Grazing responses of tropical freshwater fishes to different scales of variation in their food

  • Papers from a symposium on the Evolutionary Ecology of Neotropical Freshwater Fishes
  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Grazing fishes in neotropical streams confront variation in their attached algal food that ranges in scale from differences in quality among algal cells to differences in the primary productivity of habitats available to the fishes. Fishes may respond to this variation on some scales but not others. For example, loricariid catfish in a Panamanian stream tracked variation in algal productivity among pool habitats very closely. In sunny pools where algae grew about seven times faster than in shaded pools, loricariids were six to seven times denser. Consequently, growth rates of pre-reproductiveAncistrus spinosus (the most common species in pools) were similar in pools of different canopies, corresponding to predictions from the ‘ideal free distribution’ hypothesis. But on a smaller scale, within pools, avoidance of avian and terrestrial predators outweighed foraging considerations. Larger species and size classes avoided water shallower than 20 cm, where (as a result) the only standing crops of attached algae large enough to be measurable by scraping occurred. During the dry season when food was. most limiting, loricariids overlapped more in their substrate use as different species sought cover in common refuges such as logs and root tangles in pools. Seasonal variation in growth rates of pool-dwelling loricariids reflect these constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Alcock, M.B. 1964. The physiological significance of defoliation on the subsequent regrowth of grass-clover mixtures and cereals. pp. 25–41.In: D.J. Crisp (ed.) Grazing in Terrestrial and Marine Environments. Blackwell, Oxford.

    Google Scholar 

  • Blum, J.L. 1956. The ecology of river algae. Bot. Rev. 22: 291–341.

    Article  CAS  Google Scholar 

  • Bowen, S.H. 1979. A nutritional constraint on detritivory in fishes: the stunted populations ofSarotherodon mossambicus in Lake Sibaya, South Africa. Ecol. Monogr. 49: 17–31.

    Article  Google Scholar 

  • Boyd, C.E. 1973. Amino acid composition of freshwater algae. Arch. Hydrobiol. 72: 1–9.

    Google Scholar 

  • Boyd, C.F. & C.P. Goodyear. 1971. Nutritive quality of foodin ecological systems. Arch. Hydrobiol. 69: 256–270.

    Google Scholar 

  • Calow, P. 1974. Evidence for bacterial feeding inPlanorbis contortus Linn. Proc. malacol. Soc. Lond. 4: 145–156.

    Google Scholar 

  • Calow, P. 1975. The feeding strategies of two freshwater gastropods,Ancylus fluviatilis Mull andPlanorbis contortus Linn. (Pulmonata) in terms of ingestion rates and absorption efficiencies. Oceologia 20: 33–49.

    Article  Google Scholar 

  • Cummins, K.W. 1977. From headwater streams to rivers. American Biology Teacher 39: 305–312.

    Google Scholar 

  • De Silva, S.S. & E.I.L. Silva. 1979. Biology of young grey mullet,Mugil cephalus L., populations in a coastal lagoon in Sri Lanka. J. Fish Biol. 15: 9–20.

    Article  Google Scholar 

  • Dupree, H.K. & K.E. Sneed. 1966. Response of channel catfish fingerlings to different levels of major nutrients in purified diets. Tech. Paper 9 of the Bureau of Sport Fisheries and Wildlife, U.S. Gov. Printing Office: 1–21.

  • Dussault, G.V. & D.L. Kramer. 1981. Food and feeding behaviour of the guppy,Poecilia reticulata (Pisces: Poeciliidae). Can. J. Zool. 59: 684–701.

    Article  Google Scholar 

  • Emlen, J.M. 1966. The role of time and energy in food preference. Amer. Natur. 100: 611–617.

    Article  Google Scholar 

  • Fish, G. R. 1951. Digestion inTilapia esculenta. Nature 167: 900.

    Article  CAS  PubMed  Google Scholar 

  • Freeland, W.J. & D.H. Janzen. 1974. Strategies in herbivory by mammals: the role of plant secondary compounds. Amer. Natur. 108: 269–289.

    Article  CAS  Google Scholar 

  • Fretwell, S.D. 1972. Populations in a seasonal environment. Princeton University Press, Princeton, 217 pp.

    Google Scholar 

  • Fryer, G. 1959. The trophic interrelationships and ecology of some littoral communities of L. Nyasa with especial reference to the fishes, and a discussion of the evolution of a group of rock-frequenting Cichlidae. Proc. Zool. Soc. Lond. 132: 153–281.

    Google Scholar 

  • Fryer, G. & T.D. Iles. 1972. The cichlid fishes of the Great Lakes of Africa. Oliver and Boyd, Edinburgh 641 pp.

    Google Scholar 

  • Gentile, J.H. 1971. Blue-green and green algal toxins pp. 27–66.In: S. Kadis, A. Ciegler & S. Ajl (ed.) Microbial Toxins, vol. 7, Academic Press, New York.

    Google Scholar 

  • Gerloff, G.C. & F. Skoog. 1954. Cell contents of nitrogen and phosphorus as a measure of their availability for growth ofMicrocystis aeruginosa. Ecology 35: 348–353.

    Article  CAS  Google Scholar 

  • Goulding, M. 1980. The fishes and the forest. Univ. Calif. Press, Berkeley. 280 pp.

    Google Scholar 

  • Gunn, J.M., S.U. Qadri & D.C. Mortimer. 1977. Filamentous algae as a food source for the brown bullhead,Ictalurus nebulosus. J. Fish. Res. Board Can. 34: 396–401.

    Google Scholar 

  • Hellier, T.R. 1962. Fish production and biomass in relation to photosynthesis in the Laguna Madre of Texas. Pub. Inst. Marine Sci. Univ. Texas 8: 1–22.

    Google Scholar 

  • Hiatt, R.W. & D.W. Strasburg. 1960. Ecological relationships of the fish fauna on coral reefs of the Marshall Islands. Ecol. Monogr. 30: 65–127.

    Article  Google Scholar 

  • Hora, S.L. 1933. Respiration in fishes. J. Bombay Natural History Society 36: 538–560.

    Google Scholar 

  • Hunter, R.F. 1964. Home range behavior in hill sheep. pp. 155–171.In: D.J. Crisp (ed.) Grazing in Terrestrial and Marine Environments, Blackwell, Oxford.

    Google Scholar 

  • Hynes, H.B.N. 1970. The ecology of running waters. Univ. Toronto Press, Toronto. 555 pp.

    Google Scholar 

  • Kawanabe, H. 1969. The significance of social structure in production of the ‘Ayu’,Plecoglossus altivelis pp. 243–251.In: T.G. Northcote (ed.) Symposium on Salmon and Trout in Streams, U.B.C. Fish. Res. Inst., Vancouver.

    Google Scholar 

  • Keenleyside, M.H.A. 1979. Diversity and adaptation in fish behaviour. Springer-Verlag, New York. 208 pp.

    Google Scholar 

  • Kramer, D.L. 1978. Reproductive seasonality in the fishes of a tropical stream. Ecology 59: 976–985.

    Article  Google Scholar 

  • Lassuy, D.R. 1980. Effects of ‘farming’ behavior byEupomacentrus lividus andHemiglyphidodon plagiometopon on algal community structure. Bull. Mar. Sci. 30: 304–312.

    Google Scholar 

  • Lowe-McConnell, R.H. 1964. The fishes of the Rupuni savanna district of British Guiana, South America. I. Ecological groupings of the fish species and the effects of the seasonal cycle on fish. J. Linn. Soc. Zool. 45: 103–144.

    Article  Google Scholar 

  • Lowe-McConnell, R.H. 1967. Some factors affecting fish populations in Amazonian waters. Atas Simp. a Biota Amazonica 7: 177–186.

    Google Scholar 

  • Lowe-McConnell, R.H. 1975. Fish communities in tropical freshwaters. Longman, London. 337 pp.

    Google Scholar 

  • MacArthur, R.H. & R. Levins. 1964. Competition, habitat selection, and character displacement in a patchy environment. Proc. Nat. Acad. Sci. USA 51: 1207–1210.

    Article  CAS  PubMed  Google Scholar 

  • MacArthur, R.H. & E.R. Pianka. 1966. On optimal use of a patchy environment. Amer. Natur. 100: 603–609.

    Article  Google Scholar 

  • Montgomery, W.L. 1980. The impact of non-selective grazing by the giant blue damselfish,Microspathodon dorsalis, on algal communities in the Gulf of California, Mexico. Bull. Mar. Sci. 30: 290–303.

    Google Scholar 

  • Moriarty, D.J.W. 1973. The physiology of digestion of bluegreen algae in the cichlid fish,Tilapia nilotica. J. Zool. Lond. 171: 25–39.

    Article  CAS  Google Scholar 

  • Moriarty, D.J.W., J.P.E.C. Darlington, I.G. Dunn, C.M. Moriarty & M.P. Tevlin. 1973. Feeding and grazing in Lake George, Uganda. Proc. L. Soc. Lond. B. 184: 299–319.

    Article  Google Scholar 

  • Moriarty, D.J.W. & C.M. Moriarty. 1973. The assimilation of carbon from phytoplankton by two herbivorous fishes,Tilapia nilotica andHaplochromis nigripinnis. J. Zool. Lond. 171: 41–55.

    Google Scholar 

  • Nicotri, M.E. 1977. Grazing effects of four marine intertidal herbivores on the microflora. Ecology 58: 1020–1032.

    Article  Google Scholar 

  • Niederholzer, R. & R. Hofer. 1979. The adaptation of digestive enzymes to temperature, season and diet in the roach,Rutilus rutilus L. and rudd,Scardinius erythrophthalmus L. I. Cellulase. J. Fish Biol. 15: 411–416.

    Article  CAS  Google Scholar 

  • Odum, W.E. 1970. Utilization of the direct grazing and plant detritus food chains by the striped mulletMugil cephalus. pp. 222–240.In: J.H. Steele (ed.) Marine Food Chains, Oliver and Boyd, Edinburg.

    Google Scholar 

  • Ogden, J.C. & P.S. Lobel. 1978. The role of herbivorous fishes and urchins in coral reef communities. Env. Biol. Fish. 3: 49–63.

    Article  Google Scholar 

  • Payne, A.I. 1978. Gut pH and digestive strategies in estuarine grey mullet (Mugilidae) and tilapia (Cichlidae). J. Fish Biol. 13: 627–630.

    Article  Google Scholar 

  • Porter, K.G. 1977. The plant-animal interface in freshwater ecosystems. Amer. Sci. 65: 159–170.

    Google Scholar 

  • Power, M.E. 1981. The grazing ecology of armored catfish (Loricariidae) in a Panamanian stream. Ph.D. Thesis, Univ. Washington, Seattle. 268 pp.

    Google Scholar 

  • Power, M.E. 1983a. Depth-distributions of armored catfish: predator-induced resource avoidance? Ecology (in print).

  • Power, M.E. 1983b. The importance of sediment in the grazing ecology and social interactions of an armored catfish,Ancistrus spinosus. Env. Biol. Fish. (in print).

  • Power, M.E. 1983c. Habitat quality and the distribution of algae-grazing catfish in a Panamanian stream. J. Anim. Ecol. (in print).

  • Prejs, A. & M. Blaszczyk 1977. Relationship between food and cellulase activity in freshwater fishes. J. Fish Biol. 11: 447–452.

    Article  CAS  Google Scholar 

  • Roberts, T.R. 1972. Ecology of fishes in the Amazon and Congo basins. Bull. Mus. Comp. Zool. Harv. 143: 117–147.

    Google Scholar 

  • Roberts, T.R. 1973. Osteology and relationships of the Prochilodontidae, a South American family of characoid fishes. Bull. Mus. Comp. Zool. Harv. 145: 213–235.

    Google Scholar 

  • Round, F.E. 1964. The ecology of benthic algae. pp. 138–84.In: D.F. Jackson (ed.) Algae and Man, Plenum Press, New York.

    Google Scholar 

  • Round, F.E. 1965. The biology of the algae. Arnold, London. 269 pp.

    Google Scholar 

  • Royama, T. 1970. Evolutionary significance of predators response to local differences in prey density: a theoretical study. Proc. Adv. Study Dynamics Numbers Popul. (Oosterbeek): 344–357.

  • Ruttner, F. 1952. Fundamentals of limnology. Univ. Toronto Press, Toronto. 295 pp.

    Google Scholar 

  • Schoener, T.W. 1971. Theory of feeding strategies. Ann. Rev. Ecol. Syst. 2: 369–404.

    Article  Google Scholar 

  • Spoehr, H.A. & H.W. Milner. 1949. The chemical composition ofChlorella: effect of environmental conditions. Plant Physiol. 24: 120–149.

    Article  CAS  PubMed  Google Scholar 

  • Stickney, R.R. & S.E. Shumway. 1974. Occurrence of cellulase activity in the stomachs of fishes. J. Fish Biol. 447–452.

  • Stimson, J. 1973. The role of the territory in the ecology of the intertidal limpet,Lottia gigantea (Gray). Ecology 54: 1020–1030.

    Article  Google Scholar 

  • Vannote, R.L., G.W. Minshall, K.W. Cummins, J.R. Sedell & C.E. Cushing. 1980. The river continuum concept. Can. J. Fish. Aquat. Sci. 37: 130–137.

    Article  Google Scholar 

  • Westoby, M. 1974. An analysis of diet selection by large generalist herbivores. Amer. Natur. 108: 290–304.

    Article  Google Scholar 

  • Wetzel, R.G. 1975. Limnology. Saunders, Philadelphia. 743 pp.

    Google Scholar 

  • White, T.C.R. 1978. The importance of relative shortage of food in animal ecology. Oecologia 33: 71–86.

    Article  Google Scholar 

  • Whitton, B.A. 1975. Algae. pp. 81–105.In: B.A. Whitton (ed.) River Ecology, Univ. Calif. Press, Berkeley.

    Google Scholar 

  • Willoughby, L.G. 1977. Freshwater Biology. Pica Press, New York.

    Google Scholar 

  • Zaret, T.M. & A.S. Rand. 1971. Competition in tropical stream fishes: support for the competetive exclusion principle. Ecology 52: 336–342.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Power, M.E. Grazing responses of tropical freshwater fishes to different scales of variation in their food. Environ Biol Fish 9, 103–115 (1983). https://doi.org/10.1007/BF00690856

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690856

Keywords

Navigation