Skip to main content
Log in

Strains in the exoskeleton of spiders

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

This is a first attempt to measure strain in the exoskeleton of arthropods during locomotion. The selected sites of measurement at the tibia of large spiders allowed a direct estimation of the mechanical input of slit sense organs, which are biological strain receptors. This study includes (I) the development of techniques for measurement, (II) an anatomical and biomechanical investigation of the tibia-metatarsus joint of spiders, (III) the measurement of cuticular strains developed by external and internal forces in tethered theraphosids (Aviculariidae), and (IV) the measurement of strain in the legs of freely moving animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam M, Czihak G (1964) Mikroskop und mikroskopische Arbeitsmethoden. Fischer, Stuttgart

    Google Scholar 

  • Alexander RMcN (1979) The invertebrates. University Press, Cambridge

    Google Scholar 

  • Allan W, Charlton M, Montgomery A (1980) Semiconductor force transducer suitable for use with small muscles. Med Biol Eng Comput 18:378–380

    Google Scholar 

  • Arcan M (1982) Experimental stress analysis and biomechanics: Their current interaction. Proc VII Intern Conf Exp Stress Analysis, Haifa:61–79

  • Baggot DG, Goodship AE, Lanyon LE (1981) A quantitative assessment of compression plate fixation in vivo: An experimental study using the sheep radius. J Biomech 14:701–711

    Google Scholar 

  • Barnes GRG, Pinder DN (1974) In vivo tension and bone strain measurement and correlation. J Biomech 7:35–42

    Google Scholar 

  • Barth FG (1973) Microfiber reinforcement of an arthropod cuticle. — Laminated composite materials in biology. Z Zellforsch 144:409–433

    Google Scholar 

  • Barth FG (1978) Slit sense organs: ‘Strain gauges’ in the arachnid exoskeleton. Symp Zool Soc Lond 42:439–448

    Google Scholar 

  • Barth FG (1981) Strain detection in the arthropod exoskeleton. In: Laverack MS, Cosens DJ (eds) Sense organs. Blackie, Glasgow, pp 112–141

    Google Scholar 

  • Barth FG, Blickhan R (1984) Mechanoreception. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 1. Springer, Berlin Heidelberg New York Tokyo, pp 554–582

    Google Scholar 

  • Barth FG, Bohnenberger J (1978) Lyriform slit sense organ: thresholds and stimulus amplitude ranges in a multi unit mechanoreceptor. J Comp Physiol 125:37–43

    Google Scholar 

  • Barth FG, Libera W (1970) Ein Atlas der Spaltsinnesorgane vonCupiennius salei Keys. (Chelicerata Araneae). Z Morphol Tiere 68:343–369

    Google Scholar 

  • Barth FG, Pickelmann P (1975) Lyriform slit sense organs: modelling an arthropod mechanoreceptor. J Comp Physiol 103:39–54

    Google Scholar 

  • Barth FG, Seyfarth E-A (1979)Cupiennius salei Keys. (Araneae) in the highlands of central Guatemala. J Arachnol 7:255–263

    Google Scholar 

  • Barth FG, Ficker E, Federle HU (1984) Model studies on the mechanical significance of grouping in compound spider slit sensilla (Chelicerata, Araneida). Zoomorphology 104:204–215

    Google Scholar 

  • Bayer R (1968) Untersuchungen am Kreislaufsystem der Wanderheuschrecke (Locusta migratoria migratorioides R. et F., Orthopteroidea) mit besonderer Berücksichtigung des Blutdruckes. Z Vergl Physiol 58:76–135

    Google Scholar 

  • Blickhan R, Barth FG (1979) Dehnungen und Spannungen im Au\enskelett von Arthropoden. In: VDI, Experimentelle Spannungsanalyse in der Werkstofftechnik. GESA-Symp., Braunschweig, S

  • Blickhan R, Barth FG, Ficker E (1982) Biomechanics in a sensory system. (Strain detection in the exoskeleton of arthropods.) Proc VII'th Int Conf Exp Stress Anal, Haifa, 223–234

  • Bohnenberger J (1978) The transfer characteristics of a lyriform slit sense organ. Symp Zool Soc Lond 42:449–455

    Google Scholar 

  • Bohnenberger J (1979) Das übertragungsverhalten eines zusammengesetzten Spaltsinnesorganes auf dem Spinnenbein. Dissertation, Frankfurt am Main.

  • Bohnenberger J (1981) Matched transfer characteristics of single units in a compound slit sense organ. J Comp Physiol 142:391–402

    Google Scholar 

  • Burger JW, Smythe CHMcC (1953) The general form of circulation in the lobster,Homarus. J Cell Comp Physiol 42:369–383

    Google Scholar 

  • Carter DR (1978) Anisotropic analysis of strain rosette information from cortical bone. J Biomech 11:199–202

    Google Scholar 

  • Carter DR, Smith DJ, Spengler DM, Daly CH, Frankel VH (1980) Measurement and analysis of in vivo bone strains on the canine radius and ulna. J Biomech 13:27–38

    Google Scholar 

  • Chapman G (1958) The hydrostatic skeleton of invertebrates. Biol Rev 33:338

    Google Scholar 

  • Chapman G (1975) Versatility of hydraulic systems. J Exp Zool 194:24

    Google Scholar 

  • Charm SE, Kurland GS (1972) Blood rheology. In: Bergel DH (ed) Cardiovascular fluid dynamics. Academic Press, London, pp 158–195

    Google Scholar 

  • Charteris J, Leach D, Taves C (1979) Comparative kinematic analysis of bipedal and quadrupedal locomotion: a cyclographic technique. J Anat 128:803–819

    Google Scholar 

  • Cochran GVB (1972) Implantation of strain gauges on bone in vivo. J Biomech 5:119–123

    Google Scholar 

  • Cortrell CB (1962) The imaginal ecdysis of blowflies. Observations on the hydrostatic mechanisms involved in digging and expansion. J Exp Biol 39:431–448

    Google Scholar 

  • Cruse H (1976) The function of the legs in the free walking stick insect,Carausius morosus. J Comp Physiol 112:235–262

    Google Scholar 

  • Currey JD (1967) The failure of exoskeletons and endoskeletons. J Morphol 123:1–16

    Google Scholar 

  • Darnhofer-Demar B (1977) Funktionsmorphologie der Mittelbeine von WasserlÄufern der GattungGerris. Fortschr Zool 24:115–122

    Google Scholar 

  • Elliott CJH (1981) The expansion ofSchistocerca gregaria at the imaginal ecdysis: The mechanical properties of the cuticle and the internal pressure. J Insect Physiol 27:695–704

    Google Scholar 

  • Galilei G (1638) Untersuchungen und mathematische Demonstrationen über zwei neue Wissenszweige, die Mechanik und die Fallgesetze betreffend. Arectri. Ostwalds Klassiker 11, 24, 25. Wiss Buchges, Darmstadt (1973)

  • Glücklich D (1976) Die Versteifung von Kunststoffmodellen durch elektrische Dehnungsme\streifen. VDI-Zeitschrift 118:829–834

    Google Scholar 

  • Goldstein H (1963) Klassische Mechanik. Akad Verlagsges, Frankfurt

    Google Scholar 

  • Harris JK (1978) A photoelastic substrate technique for dynamic measurements of forces exerted by moving organisms. J Microscopy 114:219–228

    Google Scholar 

  • Harris J, Ghiradella H (1980) The forces exerted on the substrate by walking and stationary crickets. J Exp Biol 85:263–279

    Google Scholar 

  • Heglund (1981) A simple design for a force plate to measure ground reaction forces. J Exp Biol 93:333–338

    Google Scholar 

  • Hepburn HR, Joffe I (1976) On the material properties of insect exoskeletons. In: Hepburn HR (ed) The insect integument. Elsevier, Amsterdam, pp 207–235

    Google Scholar 

  • Hergenröder R, Barth FG (1983) The release of attack and escape behavior by vibratory stimuli in a wandering spider (Cupiennius salei Keys). J Comp Physiol 152:361–371

    Google Scholar 

  • Lanyon LE (1972) In vivo bone strain recorded from thoracic vertebrae of sheep. J Biomech 5:277–281

    Google Scholar 

  • Lanyon LE, Hampson WGJ, Goodship AE, Shah JS (1975) Bone deformation in vivo from strain gauges attached to the human tibial shaft. Acta Orthop Scand 46:256–268

    Google Scholar 

  • Lanyon LE, Smith RN (1969) Measurements of bone strain in the walking animal. Res Vet Sci 10:93–94

    Google Scholar 

  • Lauder GV, Lanyon LE (1980) Functional anatomy of feeding in the bluegill sunfish,Lepomis macrochirus: In vivo measurement of bone strain. J Exp Biol 84:33–55

    Google Scholar 

  • Melchers M (1963) Zur Biologie und zum Verhalten vonCupiennius salei (Keyserling), einer amerikanischen Ctenide. Zool Jb Abt System, Oekol Geogr 91:1–90

    Google Scholar 

  • Müller RK (1971) Handbuch der Modellstatik. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nachtigall W (1977) Biostatik. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik. Springer, Berlin Heidelberg New York, pp 514–525

    Google Scholar 

  • Parry DA (1957) Spider leg-muscles and the autotomy mechanism. Q J Microsc Sci 98:331–340

    Google Scholar 

  • Parry DA, Brown RHJ (1959a) The hydraulic mechanism of the spider leg. J Exp Biol 36:423–433

    Google Scholar 

  • Parry DA, Brown RHJ (1959b) The jumping mechanism of salticid spiders. J Exp Biol 36:654–664

    Google Scholar 

  • Pauwels F (1949/50) Die Bedeutung der Bauprinzipien des Stütz- und Bewegungsapparates für die Beanspruchung der Röhrenknochen. Z Anat Entwickl Gesch 114:129–167

    Google Scholar 

  • Picken LER (1936) The mechanism of urine formation in invertebrates. I. The excretion mechanism in certain Arthropoda. J Exp Biol 13:309–328

    Google Scholar 

  • Roberts VL (1966) Strain-gauge techniques in biomechanics. Exp Mech 6:19–23

    Google Scholar 

  • Seyfarth E-A (1978a) Lyriform slit sense organs and muscle reflexes in the spider leg. J Comp Physiol 125:45–57

    Google Scholar 

  • Seyfarth E-A (1978b) Mechanoreceptors and proprioceptive reflexes: lyriform organs in the spider leg. Symp Zool Soc Lond 42:457–467

    Google Scholar 

  • Seyfarth E-A, Barth FG (1972) Compound slit sense organs on the spider leg: Mechanoreceptors involved in kinesthetic orientation. J Comp Physiol 78:176–191

    Google Scholar 

  • Seyfarth E-A, Bohnenberger J (1980) Compensated walking of tarantula spiders and the effect of lyriform slit sense organ ablation. Proc 8. Int Congr Arachnol, Wien, pp 249–255

  • Slama K (1976) Insect hemolymph pressure and its determination. Acta Entomol Bohemoslov 73:65–75

    Google Scholar 

  • Stewart DM, Martin AW (1974) Blood pressure in the tarantula,Dugesiella hentzi. J Comp Physiol 88:141–172

    Google Scholar 

  • Speck J, Barth FG (1982) Vibration sensitivity of pretarsal slit sensilla in the spider leg. J Comp Physiol 148:187–194

    Google Scholar 

  • Szabo I (1972) Höhere technische Mechanik. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Szabo I (1975) Einführung in die technische Mechanik. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Tanaka Y, Hisada M (1980) The hydraulic mechanism of the predatory strike in dragonfly larvae. J Exp Biol 88:1–19

    Google Scholar 

  • Vincent JF, Hillerton JE (1979) The tanning of insect cuticle — A critical review and a revised mechanism. J Insect Physiol 25:653–658

    Google Scholar 

  • Wainwright SA (1969) Design in hydraulic organisms. Naturwissenschaften 57:321–326

    Google Scholar 

  • Wright TM, Hayes MC (1979) Strain gauge application on compact bone. J Biomech 12:471–475

    Google Scholar 

  • Yamada H (1970) Strength of biological materials. Evans FG (ed) Williams and Willkins, Baltimore

    Google Scholar 

  • Zdarek J, Slama K, Gottfried F (1979) Changes in internal pressure during puparium formation in flies. J Exp Zool 207:187–196

    Google Scholar 

  • Zill SN, Moran DT (1981a) The exoskeleton and insect proprioception. I. Responses of tibial campaniform sensilla to external and muscle-generated forces in the American cockroach,Periplaneta americana J Exp Biol 91:1–24

    Google Scholar 

  • Zill SN, Moran DT (1981b) The exoskeleton and insect proprioception. III. Activity of tibial campaniform sensilla during walking in the American cockroach,Periplaneta americana. J Exp Biol 94:57–75

    Google Scholar 

  • Zill SN, Moran DT, Varela FG (1981) The exoskeleton and insect proprioception. II. Reflex effects of tibial campaniform sensilla in the American cockroach,Periplaneta americana. J Exp Biol 94:43–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blickhan, R., Barth, F.G. Strains in the exoskeleton of spiders. J. Comp. Physiol. 157, 115–147 (1985). https://doi.org/10.1007/BF00611101

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00611101

Keywords

Navigation