Skip to main content
Log in

Oxidation of Ni-Cr-W ternary alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior in air at 1000–1250°C of four Ni-Cr-W alloys containing sufficient chromium content (∼22 at. % Cr) for protective Cr2O3 formation in a binary Ni-Cr alloy is reported. Generally for alloys high in W (10 and 16 at.% W), the rejection of tungsten into the alloy beneath the scale introduced a steep Cr concentration gradient and slower Cr diffusion such that continuous precipitation of Cr2O3 internal oxides prevented the formation of a Cr2O3 protective scale. The alloy most dilute in W (1.6 at. % W) formed a protective scale at short times with little outer NiO scale, but scale fractures led to internal oxidation and rapid nonprotective kinetics. After an initially rapid oxidation increment to form NiO, the 3 at.% Walloy formed a protective Cr2O3 scale with about the same steady-state parabolic kinetics as a binary Ni-30Cr alloy. The effect of ternary Wadditions on the development of Cr2O3 scales on Ni-Cr-W alloys is considered as a ternary analog to Wagner's description of the oxidation of Cu-Pt or Cu-Pd alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Belton and R. L. McCarron,J. Phys. Chem. 68, 1852 (1964).

    Google Scholar 

  2. C. Wagner,Corros. Sci. 8, 889 (1968).

    Google Scholar 

  3. W. W. Smeltzer and D. P. Whittle,J. Electrochem. Soc. 125, 1116 (1978).

    Google Scholar 

  4. O. T. Ziebold and R. E. Ogilvie,Anal. Chem. 35, 621 (1963).

    Google Scholar 

  5. S. Mrowec, “Attack of High Temperature Alloys in Sulfiding Gases,” in Properties of High Temperature Alloys, Z. A. Foroulis and F. A. Pettit, eds. (Electrochem. Soc., Princeton, 1976).

    Google Scholar 

  6. G. C. Wood and T. Hodgkiess,J. Electrochem. Soc. 113, 319 (1966).

    Google Scholar 

  7. C. S. Giggins and F. S. Pettit,Trans. Met. Soc. A.I.M.E. 245, 2495 (1969).

    Google Scholar 

  8. G. C. Wood and T. Hodgkiess,Nature 211, 1358 (1966).

    Google Scholar 

  9. G. H. Meier and R. A. Rapp,Z. Phys. Chem. 54, 168 (1971).

    Google Scholar 

  10. C. E. Birchenall, “Diffusion in Oxides,” inMass Transport in Oxides, NBS Spec. Publ. 296, J. B. Wachtman and A. D. Franklin, eds. (1967), p. 119.

  11. N. N. Khoi, W. W. Smeltzer, and J. D. Embury,J. Electrochem. Soc. 122, 1495 (1975).

    Google Scholar 

  12. C. Wagner,J. Electrochem. Soc. 103, 571 (1956).

    Google Scholar 

  13. S. Espevik, R. A. Rapp, P. L. Daniel, and J. P. Hirth,Oxid. Met. to be published.

  14. L. C. Walters and R. E. Grace,J. Appl. Phys. 8, 2331 (1968).

    Google Scholar 

  15. W. C. Hagel and A. U. Seybolt,J. Electrochem. Soc. 108, 1146 (1961).

    Google Scholar 

  16. D. Caplan and G. I. Sproule,Oxid. Met. 9, 459 (1975).

    Google Scholar 

  17. C. E. Birchenall, unpublished research, private communication.

  18. K. Momma, H. Suto, and H. Oikawa,Nippon Kinzoku Gakkaishi 28, 197 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Former address: Scandinavian Institute of Dental Materials, Oslo, Norway (deceased).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espevik, S., Rapp, R.A., Daniel, P.L. et al. Oxidation of Ni-Cr-W ternary alloys. Oxid Met 14, 85–108 (1980). https://doi.org/10.1007/BF00603987

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603987

Key words

Navigation