Skip to main content
Log in

An assessment of expressions for the apparent thermal conductivity of cellular materials

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Diverse expressions for the thermal conductivity of cellular materials are reviewed. Most expressions address only the conductive contribution to heat transfer; some expressions also consider the radiative contribution. Convection is considered to be negligible for cell diameters less than 4 mm. The predicted results are compared with measured conductivities for materials ranging from fine-pore foams to coarse packaging materials. The dependencies of the predicted conductivities on the material parameters which are most open to intervention are presented graphically for the various models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Absorption coefficient

C itv(J mol−1 K−1):

Specinc heat

E :

Emissivity

E L :

Emissivity of hypothetical thin parallel layer

E o :

Boundary surfaces emissivity

f :

Fraction of solid normal to heat flow

f s :

Fraction of total solid in struts of cell

K(m−1):

Mean extinction coefficient

k(Wm−1 K−1):

Effective thermal conductivity of foam

k cd(Wm−1 K−1):

Conductive contribution

k cr(Wm−1 K−1):

Convertive contribution

k g(Wm−1K−1):

Thermal conductivity of cell gas

k r(Wm−1 K−1):

Radiative contribution

k s(Wm−1 K−1):

Thermal conductivity of solid

L(m):

Thickness of sample

L g(m):

Diameter of cell

L s(m):

Cell-wall thickness

n :

Number of cell layers

r :

Reflection coefficient

t :

Transmission coefficient

T(K):

Absolute temperature

T m(K):

Mean temperature

T N :

Fraction of energy passing through cell wall

T 1(K):

Temperature of hot plate

T 2(K):

Temperature of cold plate

V g :

Volume fraction of gas

V w :

Volume fraction of total solid in the windows

w :

Refractive index

δ(m):

Effective molecular diameter

η(Pa s):

Gas viscosity

θ:

Structural angle with respect to rise direction

σ(Wm−2 K−4):

Stefan constant

References

  1. House of Commons Energy Committee, Sixth Report, Energy Policy Implications of the Greenhouse Effect (Her Majesty's Stationery Office, London 1989) Vol. 1, para. 102.

    Google Scholar 

  2. R. C. Progelhof, J. L. Throne and R. R. Ruetsch, Polym. Engng. Sci. 16 (1976) 615.

    CAS  Google Scholar 

  3. D. K. Hale, J. Mater. Sci. 11 (1976) 2105.

    CAS  Google Scholar 

  4. R. Taylor, in “International encyclopedia of composites”, edited by S. M. Lee Vol. 5, (VCH, New York, 1991) pp. 530–548.

    Google Scholar 

  5. J. T. Mottram and R. Taylor, ibid.“ Vol. 5, (VCH, New York, 1991) pp. 476–496.

    Google Scholar 

  6. R. A. Crane, R. I. Vachon and M. S. Khader, Proceedings of the Seventh Symposium on Thermophysical Properties, Galthersberg, MD, USA (American Society for Mechanical Engineers, NY, USA, 1977) pp, 109–123.

    Google Scholar 

  7. J. A. Valenzuela and L. R. Glicksman, in Thermal Insulation, Materials and Systems for Energy Conservation in the 80's, ASTM STP 789, edited by F. A. Govan, D. M. Greason, J. D. McAllister (American Society for Testing and Materials, Philadelphia, USA) pp. 688–702.

  8. J. C. Maxwell, “A treatise on electricity and magnetism”, Vol. 1 (Clarendon Press, Oxford 1892) p. 440.

    Google Scholar 

  9. W. Woodside and J. H. Messmer, J. Appl. Phys. 32 (1961) 1688.

    Google Scholar 

  10. A. V. Liukov, A. G. Shashkor, L. L. Vasiliev and Yu. E. Fraisman Int. J. Heat Mass Transfer 11 (1968) 117.

    Google Scholar 

  11. R. L. Hamilton and O. K. Crosser, Ind. Engng. Chem. Fundam. 1 (1962) 187.

    CAS  Google Scholar 

  12. D. Tabor, “Gases, liquids and solids”, 2nd Edn (Cambridge University Press, Cambridge, 1979) p. 57.

    Google Scholar 

  13. M. E. Stephenson and M. Mark, Amer. Soc. Heat., Refrig. Air Conditioning Engineers J., 3 February (1961) 75.

    CAS  Google Scholar 

  14. G. T-N. Tsao, Ind. Engng. Chem. 53 (1961) 395.

    Google Scholar 

  15. A. Sugawaru and Y. Yoshizawa, J. Appl. Phys. 33 (1962) 3135.

    Google Scholar 

  16. A. W. Pratt, in “Thermal conductivity“, edited by R. P. Tye, Vol. 1 (Academic Press, London 1969) p. 319.

    Google Scholar 

  17. C. H. Lees, Phil. Mag. 49 (1900) 221.

    Google Scholar 

  18. Z. Hashin and S. Shtrikman, J. Appl. Phys. 33 (1962) 3125.

    CAS  Google Scholar 

  19. D. J. Doherty, R. Hurd and G. R. Lester, Chem. Ind. July (1962) 1340.

  20. S. Baxter and T. T. Jones, Plastics Polym. 40 (1972) 69.

    CAS  Google Scholar 

  21. F. K. Brockhagen and W. Schmidt, in “Polyurethane Foams”, edited by T. T. Healy (Iliffe, London, 1964) pp. 93–144.

    Google Scholar 

  22. E. Kerner, Proc. Phys. Soc. B 369 (1956) 802.

    Google Scholar 

  23. A. D. Brailsford and K. G. Major, Brit. J. Appl. Phys. 15 (1964) 313.

    Google Scholar 

  24. T. Zhang, J. R. G. Evans and K. K. Dutta, J. Euro. Ceram. Soc. 5 (1989) 303.

    CAS  Google Scholar 

  25. R. Hamilton and O. Crosser, Ind. Engng. Chem. Fundam. 1 (1962) 187.

    CAS  Google Scholar 

  26. M. H. Kuok, H. K. Sy and K. L. Tan, Reg. J. Energy, Heat Mass Transfer 7 (1985) 17.

    CAS  Google Scholar 

  27. S. Oka and K. Yamone, Jpn. J. Appl. Phys. 6 (1967) 469.

    CAS  Google Scholar 

  28. R. M. Barrer, in “Diffusion in polymers” Edited by J. Crank and G. S. Park, (Academic Press, London 1968) pp. 165–216.

    Google Scholar 

  29. Von D. A. G. Bruggeman, Ann. Phys. 5 (1935) 636.

    Google Scholar 

  30. R. C. Progelhof and J. L. Throne, J. Cell. Plast. 11 (1975) 152.

    CAS  Google Scholar 

  31. A. Eucken, Forsch. Gebiete Ingenieuru B3 Forschurgshaft No. 353 (1932) 16.

    Google Scholar 

  32. H. W. Russell, J. Amer. Ceram Soc. 18 (1939) 1.

    Google Scholar 

  33. B. Budiansky, J. Compos. Mater. 4 (1970) 286.

    Google Scholar 

  34. T. B. Jefferson, O. W. Witzell and W. L. Sibbitt, Ind. Engng. Chem. 50 (1958) 1589

    CAS  Google Scholar 

  35. L. Topper, Ind. Engng. Chem. 47 (1955) 1377.

    CAS  Google Scholar 

  36. S. C. Cheng and R. I. Vachon, Int. J. Heat Mass Transfer 13 (1970) 537.

    CAS  Google Scholar 

  37. D. Bedeaux and R. Kapral, J. Chem. Phys. 79 (1983) 1783.

    CAS  Google Scholar 

  38. L. E. Nielsen, J. Appl. Polym. Sci. 17 (1973) 3819.

    Google Scholar 

  39. Idem., Ind. Engng. Chem. Fundam. 13 (1974) 17.

    CAS  Google Scholar 

  40. Idem., Appl. Polym. Symp. 12 (1966) 249.

    Google Scholar 

  41. J. M. Peterson and J. J. Hermans, J. Compos. Mater. 3 (1969) 338.

    Google Scholar 

  42. M. M. Levy, J. Cell. Plastics 2 (1966) 37.

    CAS  Google Scholar 

  43. D. Bhattacharjee, J. A. King and K. N. White-Head, ibid. 27 (1991) 240.

    Google Scholar 

  44. R. J. Harding, ibid. 1 (1965) 224.

    Google Scholar 

  45. Idem. ibid. 1 (1965) 385.

    CAS  Google Scholar 

  46. F. J. Norton, ibid. 3 (1967) 23.

    CAS  Google Scholar 

  47. C. J. Hilado and W. R. Proops, ibid. 5 (1969) 299.

    CAS  Google Scholar 

  48. G. W. Ball, R. Hurd and M. G. Walker, ibid. 6 (1970) 66.

    CAS  Google Scholar 

  49. R. R. Dixon, L. E. Edelman and D. K. McLain, ibid. 6, (1970) 44.

    CAS  Google Scholar 

  50. M. Bomberg, ibid. 26 (1990) 275.

    Google Scholar 

  51. T. T. Jones, Plastics Polym. 40 February (1972) 33.

    CAS  Google Scholar 

  52. R. Boetes and C. J. Hoogendoorn, Proc. Int. Cent., Heat Mass Trans. 24 (1987) 14.

    CAS  Google Scholar 

  53. L. Glickman, M. Schuetz and M. Sinofsky, Int. J. Heat Mass. Trans. 30 (1987) 187.

    Google Scholar 

  54. M. A. Schuetz and L. R. Glicksman, J. Cell. Plast. 20 (1984) 114.

    CAS  Google Scholar 

  55. L. R. Glicksman, Cellular Polym. 10 (1991) 276.

    CAS  Google Scholar 

  56. A. Cunningham, Proc. Int. Cent. Heat Mass Trans. 24 (1987) 32.

    CAS  Google Scholar 

  57. R. J. J. Williams, C. M. Aldao, Polym. Engng. Sci. 23, (1983) 293.

    CAS  Google Scholar 

  58. M. Garbuny, “Optical Physics”, (Academic Press, NY, 1965) p. 257.

    Google Scholar 

  59. A. L. Loeb, J. Amer. Ceram. Soc. 37 (1954) 96.

    CAS  Google Scholar 

  60. J. Francl and W. D. Kingery, ibid. 37 (1954) 99.

    CAS  Google Scholar 

  61. W. J. Batty, S. D. Probert and P. W. O'Callaghan, Appl. Energy 18 (1984) 117.

    CAS  Google Scholar 

  62. R. J. Harding, J. Cell. Plast. 2 (1966) 206.

    Google Scholar 

  63. R. Caps, A. Trunger, D. Buttner and J. Fricke, Int. J. Heat and Mass Transf. 27 (1984) 1865.

    Google Scholar 

  64. J. Fricke, R. Caps, D. Buttner, U. Heinemann and E. Hummer, J. Non-Cryst. Sol. 95–96 (1987) 1167.

    Google Scholar 

  65. R. Caps and J. Fricke, Solar Energy 36 (1986) 361.

    CAS  Google Scholar 

  66. T. W. Tong and C. L. Tien, Trans. ASME Ser. C. J. Heat Transfer 105 (1983) 70.

    CAS  Google Scholar 

  67. T. W. Tong, Q. S. Yang and C. L. Tien, ibid. 105 (1983) 76.

    CAS  Google Scholar 

  68. R. W. Skochdopole, Chem. Engng. Prog. 57 (10) (1961) 55.

    Google Scholar 

  69. H. Jeffreys, Proc. Roy. Soc. A. 118 (1928) 195.

    Google Scholar 

  70. T. T. Healy, “Polyurethane foams” (Iliffe, London, 1964) p. 121.

    Google Scholar 

  71. Anon, The properties of Dupont Vespel Parts, Technical Data Sheet (Dupont, Wilmington, DE, Undated).

  72. J. Fricke, J. Non-Cryst. Solids 100 (1988) 169.

    CAS  Google Scholar 

  73. R. C. Weast (editor) Handbook of Chemistry and Physics”, 55th Edn (CRC Press, Cleveland, Ohio 1974) p. E2.

    Google Scholar 

  74. C. R. Wilke, J. Chem. Phys. 18 (1950) 517.

    CAS  Google Scholar 

  75. Loc. cit. [12], pp. 69–70.

    Google Scholar 

  76. J. Fricke in Proceedings of the First International Symposium on Aerogels at Wurzberg 1985, edited by J. Fricke (Springer Verlag, Heidelberg, 1986) pp. 94–103.

    Google Scholar 

  77. D. Buttner, R. Caps, U. Heinemann, E. Hummer, A. Kadur and J. Fricke, Solar Energy 40 (1988) 13.

    Google Scholar 

  78. D. Buttner, R. Caps and J. Fricke, High Temp. High Pressures 17 (1985) 375.

    Google Scholar 

  79. J. Brandrup and E. H. Immergut, “Polymer Handbook”, 2nd Edn (Wiley, New York, 1974) p. VIII-9.

    Google Scholar 

  80. C. A. Dostal (editor) “Engineered Materials Handbook”, Vol. 2 (American Society for Metals, Metals Park, Ohio, 1988) p. 260.

    Google Scholar 

  81. Loc. cit. [80], p. 133.

    Google Scholar 

  82. BS874 Part 2, Tests for Thermal Conductivity and Related Properties, Section 2.1, Guarded hot plate method, (British Standards Institute, London, 1986).

  83. K. M. Haunton, J. K. Wright and J. R. G. Evans, Brit. Ceram. Trans. J. 89 (1990) 53.

    CAS  Google Scholar 

  84. P. Hammond and J. R. G. Evans, J. Mater. Sci. Lett. 10 (1991) 294.

    CAS  Google Scholar 

  85. J. Greener and J. R. G. Evans, J. Mater. Sci. in press.

  86. W. Schramm, Bull. Amer. Ceram. Soc. 60 (1987) 1194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collishaw, P.G., Evans, J.R.G. An assessment of expressions for the apparent thermal conductivity of cellular materials. JOURNAL OF MATERIALS SCIENCE 29, 2261–2273 (1994). https://doi.org/10.1007/BF00363413

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00363413

Keywords

Navigation